Goal-Directed Temporal Modulation of Probabilistic Decision-Making:

The Roles of the VMPFC and Hippocampus

Kurt Braunlich^{1,2} & Carol A. Seger^{2,3}

¹University College London, ²Colorado State University, ³South China Normal University

Introduction

- In real-world environments, decision-makers must often integrate behaviorally-relevant sensory information over time and across information sources of varying reliability.
- To capitalize on transient opportunities for reward, they must also use this information in ways that are contextually-appropriate.

Experimental Paradigm

Decision Evidence

$$CmLogLR_{(step4)} = log \frac{P(Left|F_1, F_2, F_3, F_4)}{P(Right|F_1, F_2, F_3, F_4)} = \sum_{i=1}^{4} w_i$$

Probabilistic Reward

$$P(Left|F_1, F_2, F_3, F_4) = \frac{\sum_{e^{i=1}}^{4} w_i}{1 + e^{i=1}}$$

Behavioral Results

Behavioral Results Summary

- Reward availability strongly influenced decisions about when to decide
- Attentional weights closely matched those of the probabilistic environment
- Both **Confidence** and **Steps-Until-Reward** influenced reaction time

Neuroimaging Results

Summary

- The vmPFC, aHPC, dopaminergic midbrain and SMA (not shown) were strongly sensitive to Steps-Until-Response rather than Step.
- The vmPFC and aHPC increased connectivity with occipitotemporal cortex during deliberation. VMPFC additionally increased connectivity with IPS and MFG.
- MVPA: vmPFC represents CmLogLR