Goal-Directed Temporal Modulation of Probabilistic Decision-Making: The Roles of the VMPFC and Hippocampus Kurt Braunlich^{1,2} & Carol A. Seger^{2,3} ¹University College London, ²Colorado State University, ³South China Normal University ## Introduction - In real-world environments, decision-makers must often integrate behaviorally-relevant sensory information over time and across information sources of varying reliability. - To capitalize on transient opportunities for reward, they must also use this information in ways that are contextually-appropriate. ## **Experimental Paradigm** #### **Decision Evidence** $$CmLogLR_{(step4)} = log \frac{P(Left|F_1, F_2, F_3, F_4)}{P(Right|F_1, F_2, F_3, F_4)} = \sum_{i=1}^{4} w_i$$ #### Probabilistic Reward $$P(Left|F_1, F_2, F_3, F_4) = \frac{\sum_{e^{i=1}}^{4} w_i}{1 + e^{i=1}}$$ ## Behavioral Results ## Behavioral Results Summary - Reward availability strongly influenced decisions about when to decide - Attentional weights closely matched those of the probabilistic environment - Both **Confidence** and **Steps-Until-Reward** influenced reaction time ## Neuroimaging Results ## Summary - The vmPFC, aHPC, dopaminergic midbrain and SMA (not shown) were strongly sensitive to Steps-Until-Response rather than Step. - The vmPFC and aHPC increased connectivity with occipitotemporal cortex during deliberation. VMPFC additionally increased connectivity with IPS and MFG. - MVPA: vmPFC represents CmLogLR