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We used a temporally extended categorization task to investigate the neural substrates underlying our ability to
integrate information over time and across multiple stimulus features. Using model-based fMRI, we tracked
the temporal evolution of two important variables as participants deliberated about impending choices:
(1) categorical evidence, and (2) confidence (the total amount of evidence provided by the stimuli, irrespective
of the particular category favored). Importantly, in each model, we also included a covariate that allowed us to
differentiate signals related to information accumulation from other, evidence-independent functions that in-
creased monotonically with time (such as urgency or cognitive load). We found that somatomotor regions
tracked the temporal evolution of categorical evidence,while regions in bothmedial and lateral prefrontal cortex,
inferior parietal cortex, and the striatum tracked decision confidence. As both theory and experimentalwork sug-
gest that patterns of activity thought to be related to information-accumulation may reflect, in whole or in part,
an interaction between sensory evidence and urgency, we additionally investigated whether urgency might
modulate the slopes of the two evidence-dependent functions. We found that the slopes of both functions
were likely modulated by urgency such that the difference between the high and low evidence states increased
as the response deadline loomed.
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Introduction

Decision making can be characterized as a deliberative process that
involves weighing noisy samples of evidence for competing hypotheses
until committing to a particular choice. Real-world decisions require
decision-makers to flexibly optimize this process based on contextual
demands. For instance, decision-makers must often compromise deci-
sion accuracy in order to respond quickly, a phenomenon known as
the speed–accuracy trade-off (SAT), and they must often make
decisions based on uncertain evidence. For example, although the con-
sequences of either choice might be unknown, a skier heading for a
tree must commit to turn left or right within a limited period of time.
To be able to make advantageous decisions in such environments,
decision-makers must first track the evidence for each response (the
probability that each response will lead to a desirable state). Second,
in order to determine whether it might be advantageous to engage in
additional deliberation, make a guess based on the current evidence,
or to opt out of certain trials, decision-makers must also track their de-
cision confidence, the probability of reaching a desirable state irrespec-
tive of a particular choice (Ding and Gold, 2010; Kepecs et al., 2008;
Schwartenbeck et al., 2014; Sutton and Barto, 1998). Finally, in order
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to minimize costs associated with deliberation and to maximize the
probability of reaching a desirable state, they must flexibly modulate
their decision strategies based on the time available to respond (Cisek
et al., 2009; Hanks et al., 2011; Reddi and Carpenter, 2000).

In the present study, we used an implementation of the weather-
prediction categorization task inwhich probabilistic evidence for specif-
ic categories could unpredictably shift within single trials. This allowed
us to identify neural signals associated with information accumulation
and decision confidence, and to differentiate them from evidence-
independent functions, such as urgency or cognitive load. Before
describing our task and predictions in detail, we briefly describe the se-
quential sampling class of decision-making model, which provides a
useful framework for conceptualizing the temporal dynamics of
decision-making processes. We then describe relevant theoretical and
experimental work related to the accumulation of categorical evidence
and confidence. Finally, we discuss evidence-independent functions, in
particular urgency, which represents a potentialmechanismunderlying
flexible decision thresholding, and represents an important potential
confound for studies designed to investigate neuralmechanisms under-
lying the accumulation of decision evidence.

The sequential sampling model framework

Sequential sampling models (SSMs), such as the drift diffusion
model (Palmer et al., 2005; Ratcliff, 1978; Smith and Ratcliff, 2004)
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have been particularly successful in accounting for the temporal dy-
namics of decision-making behavior, particularly within perceptual
contexts. Within this framework, the strength of evidence modulates
the speedwithwhich a decision variable (representing accumulated ev-
idence) diffuses towards a decision boundary. The speed with which
decision-makers commit to a decision is modulated both by the
strength of this evidence, and by the distance between the starting
point of the accumulation process and a decision threshold. One reason
the SSM framework is attractive is that it provides a compelling charac-
terization of neural activity observed in many regions of the brain.

Categorical evidence

One particularly influential body of research examined perceptual
decision making in the domain of motion direction judgments; this
researchhas shown that neuronal activity in the lateral intraparietal sul-
cus (area LIP) in the non-human primate tracks evidence for specific be-
havioral responses and shows a stereotyped pattern at the time of
behavioral response, consistent with a role in accumulating evidence
until a decision threshold is crossed (for review, see Gold and Shadlen,
2007). Other studies with non-human primates have shown that LIP
neural activity reflects learned categorical structure (Fitzgerald et al.,
2011; Freedman and Assad, 2006; Swaminathan and Freedman,
2012), and that other regions, including the primary and premotor cor-
tices, the frontal eye fields, the superior colliculus, and the caudate also
appear to accumulate categorical evidence over time (Ding and Gold,
2010, 2012; Glimcher and Sparks, 1992; Thura and Cisek, 2014).
Neuroimaging studies with human participants suggest that a variety
of cortical regions including the pre- and primarymotor cortices and in-
ferior temporal lobe track categorical evidence (Dunovan et al., 2014;
Gluth et al., 2012; Tremel and Wheeler, 2015; Wheeler et al., 2014).

Confidence

Within the sequential sampling framework, a normative estimate of
decision confidence emerges as the unsigned difference in evidence be-
tween the winning and losing response options (Kepecs et al., 2008;
Pleskac and Busemeyer, 2010; Vickers and Packer, 1982). Within a
biological framework, representations of confidence may be naturally
derived as the unsigned difference in activity between the winning
and losing category-selective neuronal pools (Insabato et al., 2010;
Philiastides et al., 2010; Rolls et al., 2010a,b). Related signals have been
observed in the orbitofrontal cortex (OFC), ventromedial prefrontal cor-
tex (VMPFC), and dorsolateral prefrontal cortex (DLPFC) (Cohen et al.,
2007; De Martino et al., 2013; Heekeren et al., 2006; Padoa-Schioppa,
2011; Rolls et al., 2010a,b). Although subjective estimates of confidence
are likely influenced by additional sources of information, bias, and
noise (Fetsch et al., 2015), this general framework provides a principled
means to track the temporal evolution of confidence prior to a behavioral
response; one that we adopt in the present experiment.

Urgency

The final function we review is urgency, a monotonically increasing
signal hypothesized to represent an effective mechanism to modulate
decision thresholds within trials (Cisek et al., 2009; Standage et al.,
2014a,b, 2011; Thura et al., 2012). Previous groups have modeled ur-
gency in two different ways. The first is via multiplicative gain modula-
tion of the decision input, an effect predicted by theory, and one that has
been observed in the neural activity of the LIP and in the pre- and prima-
ry motor cortices in the non-human primate (Cisek et al., 2009;
Ditterich, 2006a,b; Standage et al., 2011; Thura et al., 2012; Thura and
Cisek, 2014). The second is via an additive effect that increases baseline
activity across neuronal pools (Churchland et al., 2008; Gluth et al.,
2012; Hanks et al., 2014; Kira et al., 2015; Thura and Cisek, 2014). Addi-
tive effects of urgency have been observed in the neural activity of the
FEF, LIP, and in the primary and premotor cortices of the non-human
primate (Churchland et al., 2008; Hanks et al., 2014; Heitz and Schall,
2012; Kira et al., 2015; Thura and Cisek, 2014).

Cisek and colleagues (Cisek et al., 2009; Thura et al., 2012; see also
Simen, 2012) have noted that these evidence-independent urgency sig-
nals could be easily mistaken for signals related to the accumulation of
decision evidence. In a strong formulation of their theory, observed pat-
terns of “accumulator” activity might not reflect the accumulation of
decision-evidence at all, but rather gain modulation, via an urgency
signal, of low-pass filtered estimates of sensory evidence. In part to dif-
ferentiate signals related to information-accumulation and urgency,
several recent studies have employed tasks where the evidence for,
and against, specific categorical responses can bemodulatedwithin sin-
gle trials (Gluth et al., 2012; Kira et al., 2015; Thura and Cisek, 2014;
Wheeler et al., 2014; Yang and Shadlen, 2007). To date, only two studies
have employed fMRI to do so (Gluth et al., 2012; Wheeler et al., 2014).
We feel that this is important for two reasons: first, neuronal pools
that accumulate information over time participate in larger decision-
making networks (e.g., Lo and Wang, 2006), and second, different
neural regions likely accumulate information for different purposes,
even within a single task.

Wheeler et al. (2014) adapted a temporally extended version of the
weather prediction classification task used by Yang and Shadlen (2007)
to compare trials in which information accumulated at different rates.
They found that motor cortices were sensitive to the rate at which
effector-specific evidence was presented, and that regions neighboring
the occipital/temporal lobe junction and superior middle temporal
gyrus were sensitive the strength of decision evidence but were insensi-
tive to effector information. Gluth et al. (2012) used a model-based
approach in conjunction with a temporally extended, value-based
decision-making task in which participants integrated evidence from
multiple “+” and “−” signs in order to make advantageous financial
decisions. This allowed them to identify signals tracking the value of spe-
cific choices over time (bilateral cortical motor regions) and signals that
were sensitive to the prediction of reward (ventral striatumandVMPFC).

Present study

In the present experiment, we used a temporally extended version
of the weather prediction task in which the features of an abstract
amoeba stimulus were added to the display one-by-one over four dis-
crete steps (Fig. 1). Each featurewas associated with a different amount
of probabilistic evidence for a specific category, and participants had to
integrate this information both across time and acrossmultiple stimulus
features. These characteristics capture important aspects of decisions
made within high dimensional real-world environments. First, real-
world decision-makers often have to flexibly assignweights to informa-
tion sources according to their estimated reliability, and second, they
often have to consider multiple samples of noisy information to im-
prove the accuracy of their judgments. Importantly, our experimental
design allowed us to differentiate representations of categorical
evidence and confidence from signals that would be expected to in-
crease monotonically with each trial (such as the additive urgency sig-
nal or demands associated with an increasing number of stimulus
features). It also allowed us to investigate whether representations of
decision evidence are multiplicatively modulated by urgency.

In line with previous research, we hypothesized that the integration
of categorical evidence would recruit regions of the parietal lobe
(Churchland et al., 2008; Ploran et al., 2007; Ploran et al., 2011;
Shadlen and Newsome, 2001; Yang and Shadlen, 2007), as well as pri-
mary and premotor regions (Gluth et al., 2012; Pastor-Bernier and
Cisek, 2011; Thura and Cisek, 2014;Wheeler et al., 2014).We predicted
that frontal regions, such as the VMPFC, the OFC and DLPFC would
represent effector-independent decision confidence (the unsigned dif-
ference in evidence for each of the two categories; Cohen et al., 2007;
De Martino et al., 2013; Heekeren et al., 2006; Padoa-Schioppa, 2011;



Fig. 1. (A) Trial format. In the scanner, each trial began with the presentation of the blank amoeba profile. The features (abstract organelles, nuclei and flagella, each representing different
amounts of probabilistic evidence towards a right or left response) then accumulated over four steps. Feature onsets were separated by a jittered interval. Participantswere free to respond at
any time during the trial. After a response, feedback was disbursed according to Eq. (2). A series of small dots, presented below each amoeba, indicated the number of steps remaining in the
trial. (B) Although the relationship between visual feature and logLR was randomized for each participant, we illustrate one possible mapping. Positive logLRs represent evidence for a re-
sponsemadewith the left hand. (C) For thismapping between visual feature and logLR, we illustrate the cumulative logLR, confidence, and evidence-independent (EI) functions for one pos-
sible trial (individual logLRs=− .56, .56,−2.36, 2.36). Note that although the cumulative logLR on the fourth step can be calculated via Eq. (1), due to uncertainty about impending features,
an optimal representation of the evidence available on the earlier steps is less than the sum of the logLRs of the individual features (see Definition of parametric modulators). We tested both
exponential and linear representations for the EI function; as the exponential function provided a better fit to the neuroimaging data, we used it in each model, and also illustrate it here.
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Rolls et al., 2010a,b). We also predicted that urgency would multiplica-
tively modulate representations of categorical evidence in cortical
somatomotor regions (Thura and Cisek, 2014). Finally, although we
are unaware of any experimental research investigating interactions be-
tween confidence and urgency, if category-selective neuronal pools are
multiplicatively modulated by urgency, and if confidence is derived
from the unsigned difference in their activity (Insabato et al., 2010;
Rolls et al., 2010a), it follows that representations of confidence should
also show this effect.

Methods

Participants

Twenty right-handed participants (mean age = 24, SD = 4; 12
female) were recruited from the Colorado State University and
University of Colorado at Boulder communities. Participants were
screened for history of psychiatric and neurological disorders, for cur-
rent use of psychoactive medications and for exclusionary MR criteria.
All participants were compensated at a rate of $20 per hour.

Task

Participants performed a temporally extended, binary, probabilistic
categorization task (Wheeler et al., 2014; Yang and Shadlen, 2007)
wherein they were instructed to categorize different amoeba (Fig. 1)
into one of two categories: category “A” (indicated with a left hand
response) and category “B” (indicated by a right hand response). For
mnemonic purposes, throughout the paper, we will refer to the catego-
ries by the response withwhich theywere associated, “left” and “right”.
The amoeba stimuli consisted of a black outline upon which seven dif-
ferent features (such as flagella, nuclei, and organelles) could appear.
Features could be repeated, and could appear at four different locations.
Presenting the cues as features of an amoeba was chosen for several
reasons. First, we thought that presenting cues as features of a single ob-
ject might encourage information integration and the representation of
features as aspects of a single object. Second, it provided a suitable cover
story, as biological kinds are often described in terms of typical features
that may occur probabilistically.

At the beginning of each trial, the black outline served as an ad hoc
fixation point, and cued the beginning of each trial. The features then ac-
cumulated, one-by-one, over four discrete steps. Each feature provided
a different amount of probabilistic evidence towards each category. The
logLRs associated with the individual features were −2.36, −1.12,
− .56, 0, .56, 1.12, and 2.36, where positive weights indicate evidence
towards category left, andwhere 0 indicates no evidence towards either
response. Participants were free to respond at any time during the trial,
and were instructed to simply wait until they had enough information
before doing so. After making a response, the features stopped accumu-
lating, and feedback was presented. We randomized the mapping
between logLR and visual feature for each participant in order to avoid
possible confounds associated with visual salience. The optimal
response for each trial was determined by the sign of the sum of the
logLRs associated with the individual features:

CmLogLR step4ð Þ ¼ log7
P LeftjF1; F2; F3; F4ð Þ
P RightjF1; F2; F3; F4ð Þ ¼

X4

i¼1

wi 1

where F(1–4) indicate the specific features of a particular amoeba andw,
theweights assigned to the individual features. Feedbackwas disbursed
according to the corresponding probability:

P LeftjF1; F2; F3; F4ð Þ ¼ 7
X4

i¼1
wi

1þ 7
X4

i¼1
wi

2

where P (Right) = 1 − P (Left).
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Training

Participants performed two training sessions that occurred on sepa-
rate days. The goals of the training sessions were to teach participants
about the logLRs associated with the individual features, to teach
themhow to integrate information across features, and to give themex-
perience with the temporally extended task that they would perform in
the scanner. In the first training task, in order to allow participants to
quickly gain experience with a large number of experimental trials,
we did not use the temporally extended paradigm described above,
but instead presented all features at the same time. Through trial and
error, participants first learned to categorize amoeba with one, two,
three, and then all four features. Feedback was disbursed according to
the probability corresponding to the sum of the individual logLRs
(Eq. (2)). For positive feedback, the word “correct” was presented in
green for .75 s, and was accompanied by a pleasant tone. For negative
feedback, theword “wrong”was shown for .75 s in red, andwas accom-
panied by an unpleasant tone. Participants trained until they reached an
80% accuracy criterion twice (accuracywas determined in relation to an
optimal classifier making decisions based on the sign of the sum of the
individual logLRs; the criterion was polled every 30 correct trials, and
was reset after 35). After completing this initial training task, partici-
pants then practiced the temporally extended paradigm that they
would later perform in the scanner.

The second training sessionwas completed on the same day as scan-
ning. It was identical to the first with the exception that participants
began the session by trainingwith all four features, whichwere present-
ed simultaneously. After reaching the 80% accuracy criterion (twice),
they again practiced with the temporally extended paradigm.

Scanning

In the scanner, the task was similar to the temporally extended task
included during the training sessions, but both the inter-feature and
inter-trial intervals were jittered. The interval between each feature
(and between the last step and feedback) was jittered according to a
uniform distribution with a minimum of 2 s (to mitigate nonlinear ef-
fects associated with shorter intervals; Buckner, 1998; Friston et al.,
2000), and a maximum of 4 s (step size = 0.5 s; Gluth et al., 2012).
The interval between each trial was jittered according to a positively
skewed truncated exponential distribution ranging from 2 to 9 s.

Participants performed the task during 3 scanner runs, each ofwhich
required 14min. As participantswere free to respondat any timeduring
the trial, the number of trials per run depended on when participants
made their behavioral responses (i.e., if they tended to respond quickly,
each trial tended to be shorter, and therewere a greater number of trials
per session). Each run involved the acquisition of 420 whole-brain vol-
umeswith an interleaved EPI 2D sequence (TR=2,000ms, TE=25ms,
voxel size: 2.3 × 2.3 × 3.5, flip angle = 75°, GRAPPA acceleration factor
2). We discarded the first 2 volumes to allow for magnetization equili-
bration. We also collected anatomical images using an MPRAGE
sequence.

Analyses

Preprocessing

Preprocessing involved slice-timing correction, motion correction,
coregistration, high pass filtering at 128 s, segmentation of the anatomi-
cal images, and normalization of the structural and functional images to
the MNI template. For the classical analyses, we smoothed the normal-
ized images with a 6-mm full-width-at-half-maximum Gaussian kernel.
For the random-effects Bayesian model selection (RFX-BMS) procedure
(described below), we used the normalized unsmoothed functional im-
ages (down-sampled to 3-mm isotropic voxels to improve computation-
al efficiency) to calculate the log-evidencemaps for eachmodel and each
participant. We smoothed the log-evidence maps with an 8-mm full-
width-at-half-maximum Gaussian kernel prior to group-level analyses.
All neuroimaging analyses were performed using statistical parametric
mapping (SPM12; Wellcome Trust Center for Neuroimaging).

Model-based analyses

To track the evolution of categorical evidence and confidence, and to
investigate how these representations were modulated by urgency, we
adopted a model-based approach. As some of these models yielded
highly similar statistical maps, in order to determine which of our
models best accounted for the data, we compared them using a
random-effects Bayesian model selection procedure (RFX-BMS; Rosa
et al., 2010; Stephan et al., 2009). This involves three steps. First, we
used a classical (restricted maximum likelihood) approach to identify
voxels surviving standard statistical thresholds. Second, we generated
log evidence maps (log P(y|m), the log probability of the data, y, if it
were generated by the model, m) for each model and each participant
using a variational Bayesian approach. Third, we used a random-effects
analysis at the group level to calculate the protected exceedance proba-
bilities of each model (PXP; Rigoux et al., 2014; Stephan et al., 2009).
This is the probability that a given model is more frequent than any of
the other models tested, above and beyond chance. Although calcula-
tion of the log evidence maps is computationally intensive, the RFX-
BMS approach is attractive, as it provides an intuitive metric of model
fit, allows comparison of non-nested models, and has some favorable
properties when compared to the Akaike information criterion and
the Bayesian information criterion (Penny, 2012; Rigoux et al., 2014).

For both the classical and Bayesian analyses, we assumed that neural
activity associated with deliberation would continue across each
jittered inter-feature interval, and so modeled each feature step with a
duration equal to the difference between its onset and the onset of the
following feature or the behavioral response. Such variable-duration
epochmodels tend to be more sensitive for paradigms involving cogni-
tive events of variable duration than constant epoch or variable ampli-
tude impulse models (Grinband et al., 2008). For all models, we used
the canonical double gamma hemodynamic response function. As a de-
fault, we corrected for multiple comparisons using the topological false
discovery rate (initial cluster-forming threshold: p b .001, q b .05;
Chumbley and Friston, 2009). However, to improve our spatial esti-
mates concerning the evidence-independent (EI) covariate (described
below), we considered the more conservative familywise error rate
(FWER, p b .05).

Definition of parametric modulators (PMs)
As feedbackwas disbursed based on all evidence available at the end

of the trial, it was not possible to accurately calculate cumulative logLR
for earlier steps by summing the logLRs for these features (as in
Eq. (1)). Instead, we determined the values of steps 1–3 computational-
ly, by tabulating the full permutation matrix (with replacement) and
calculating the proportion that each partial feature sequence would be
categorized as “left”. As evidence for the two categories was perfectly
anticorrelated, we defined confidence as the unsigned CmLogLR
(Fetsch et al., 2014; Hebart et al., 2014; Rolls et al., 2010a,b).We defined
urgency as a monotonically increasing signal that peaked on the 4th
step (the last step where it was possible to produce a behavioral re-
sponse that would lead to positive feedback). Both linear and exponen-
tial urgency functions were tested via RFX-BMS, and because we found
that the exponential function provided a better fit to the neuroimaging
data, we used it for all analyses described below.

Tomodel themultiplicative effect of urgency on categorical evidence
and confidence,wemultiplied thembyurgency. Themultiplicative effect
of urgency, therefore,modulated the slope of the evidence variables such
that the difference between high and low evidence states increasedwith
each step. A limitation of our design was that we could not differentiate
the additive effect of urgency from other functions that would be



Fig. 2. Behavioral performance. (A) For each participant, the proportion of category left re-
sponses is plotted across 10 bins of summed cumulative normative LogLR (Eq. (1)).
(B) Normalized subjective weights of evidence (sWOE) vs. the normalized normative
logLR used to determine the probabilistic disbursement of feedback. X-axis, normalized
logLR; Y-axis, normalized sWOE derived from each participant’s pattern of behavioral per-
formance (gray dots represent individual subject estimates; dark red=mean; light red=
95% confidence interval; blue = 1 SD). (C) Influence of each step on choice: Y-axis, abso-
lute normalized mean sWOE for each step. These analyses provide evidence that subjects
tended to integrate information across features according to a weighting scheme that
closely approximated the normative logLRs.
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expected to increase during each trial (such as increasing cognitive load
associatedwith an increasing number of stimulus features). Accordingly,
throughout the paper, we will refer to the additive urgency signal as the
evidence-independent (EI) covariate to emphasize that it was included
in order to control for signals that were insensitive to decision evidence.
Inclusion of this covariate is important, as suchmonotonically increasing,
but evidence-independent, signals can be easilymistaken for those asso-
ciated with evidence accumulation (Simen, 2012).

Tofit ourmodels to the strategies used by individual participants,we
estimated the subjective weights of evidence (sWOE) that each partici-
pant placed on the individual features (Fig. 2B). To do so in amanner ro-
bust to separation, we performed a Bayesian logistic regression analysis
(prior mean = 0 for all parameters; Gelman et al., 2008). To calculate
the cumulative subjective logLR, we followed a similar procedure used
to calculate cumulative normative logLR;we tabulated the full permuta-
tionmatrix of beta coefficients, summed each row to determine the op-
timal response, and then calculated the proportion that each sequence
of features would be categorized as “left.” Calculation of the other sub-
jective regressors also followed the process outlined for the construc-
tion of the normative regressors.

Classical analyses
As mentioned, a primary focus of the present study was to differen-

tiate signals related to information accumulation from evidence-
independent functions related to urgency or cognitive load. However,
we were also interested in investigating how urgency might modulate
representations of decision evidence. To do so, we built four models to
track the temporal evolution of CmLogLR, confidence and the EI covari-
ate. Each model included two PMs per mean feature regressor. The first
tracked decision evidence (model 1, CmLogLR; model 2, the multiplica-
tive interaction between CmLogLR and urgency; model 3, confidence;
model 4, the multiplicative interaction between confidence and urgen-
cy), while the second PM tracked the EI covariate. We were thus able to
investigatemultiplicative effects of urgency via the first PM, and control
for the EI covariate via the second. Importantly, in order to limit our in-
ferences to the unique variance associated with each regressor, we did
not orthogonalize them (Mumford et al., 2015) so that any shared var-
iance would be included in the error term rather than the first PM. Our
design thus allowed us to differentiate signals related to the strength of
decisional evidence (categorical evidence and confidence) from task-
related signals that increased monotonically during each trial.

Random-effects Bayesian model selection (RFX-BMS)
As there was considerable overlap between the statistical maps de-

rived from some of the classical analyses, we conducted two RFX-BMS
analyses. The first compared categorical evidence to categorical evi-
dence multiplicatively modulated by urgency. The second compared
confidence to confidence multiplicatively modulated by urgency. For
each model, we included one PM per mean regressor. We limited
these analyses to voxels within binary masks that included all signifi-
cant voxels from the corresponding classical statistical maps. This ap-
proach allowed us to compare models within a single framework, to
use RFX-BMS to inform our interpretations of the classical statistical
maps, and to limit our inferences to voxels surpassing standard statisti-
cal thresholds. In Figs. 3C, 4C, and 5B, we thresholded each PXP map to
include only voxels where the model provided the best fit. These
thresholded maps allow the reader to quickly identify voxels best
accounted for by eachmodel, and tomake inferences about the strength
of the evidence relative to the other model tested.

Results

Behavioral results

Average accuracy (determined relative to an optimal classifier mak-
ing decisions based on the sign of the cumulative normative logLR on
the last step) was 85% correct (SD = 6.34%). Participants were fairly
conservative, and showed a strong tendency to wait until they saw all
features before making a behavioral response (average response
step = 3.77, SD = 0.25). To confirm that participants used a strategy
wherein they weighted the features according to their reliability rather
than using a simpler strategy (e.g., counting the features belonging to
each category, or considering only the most informative features;
Gluck et al., 2002), we conducted a logistic regression analyses (de-
scribed above). The normalized beta weights for each participant are



Fig. 3. Categorical evidence. (A) Classical results related to the categorical evidence PM. Cortical (bilateral pre- and postcentral motor regions) and cerebellar (lobules 4–5) somatomotor
regions tracked the evolution of categorical evidence. Posterior regions of the right putamen, and regions of the right middle cingulate/SMA additionally tracked evidence specifically for
the left category. (B) Classical results: the model tracking the multiplicative interaction between categorical evidence and urgency yielded a similar statistical map. (C) RFX-BMS results:
protected exceedance probability (PXP)maps for the categorical evidencemodels. The PXP indicates theprobability that themodel ismore frequent in the population (relative to the other
model tested), above and beyond chance (Rigoux et al., 2014). Warm colors: CmLogLR multiplicatively modulated by urgency. Cool colors: CmLogLR. This analysis provided evidence
supporting the model tracking the multiplicative interaction between categorical evidence and urgency. Slight differences in the shapes of the ROIs between the classical and RFX-BMS
maps are due to differences in voxel dimensions used for these analyses.
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plotted against the normalized normative logLR in Fig. 2B. The linear
pattern and close correspondence between the two sets of estimates
provides evidence that participants applied weights closely resembling
the normative logLR used to determine the disbursement of feedback.
We additionally conducted a logistic regression analysis to investigate
whether participants placed greater weights on the evidence presented
in particular steps (Fig. 2C), and found no evidence of such an
effect, F(3,76) = 0.48, p = 0.7; Bayes factor in favor of the null
hypothesis = 8.87. Note that this latter logistic regression analysis
does not provide information about the effect of the EI covariate on
the cumulative logLR (the optimal representation of current evidence),
but rather provides information about the weights that participants
placed on the individual features in each epoch.

Neuroimaging results

To reduce the number of models compared, we first investigated
whether the normative or subjective CmLogLR provided a better fit to
the neuroimaging data using RFX-BMS. Although the normative and
subjective models were highly correlated and yielded similar maps,
we found stronger evidence for the normativemodel, and report results
related to these weights for all remaining neuroimaging analyses. We
Fig. 4. Confidence. (A) Classical results related to the confidence PM. (B) Classical results relate
ance probability (PXP)maps for the confidence models (CmLogLR vs. CmLogLRmultiplicatively
best fit by the confidence function that was notmodulated by urgency. These results indicate str
in the shapes of the ROIs between the classical and RFX-BMS maps are due to differences in vo
then compared linear and exponential functions for the EI covariate.
We found stronger evidence for the exponential function, and so includ-
ed this function in allmodels described below. Finally, we testedwheth-
er the additive effect of urgency (the EI covariate) and themultiplicative
effect of urgency on the normative representations of categorical evi-
dence and confidence were best accounted for by linear or exponential
urgency functions. Here too, we found that the exponential function
provided a better fit than the linear function, and report these results
below.

Categorical evidence (CmLogLR) and its interaction with urgency
During deliberation, we found that the evidence for a left response

was represented in a large contralateral region of the right pre- and
postcentral gyri (overlapping BA4 and BA6) extending into the right su-
perior parietal lobe, and in the subcortical activity of left cerebellar lob-
ules IV and V, as well as in the right posterior putamen (Fig. 3A;
Table A.1). Conversely, evidence for a right response was associated
with similar patterns of spatial activity in the opposite cortical and cer-
ebellar hemispheres. The model tracking the multiplicative interaction
between categorical evidence and urgency yielded highly similar statis-
tical maps (Fig. 3B; Table A.1). To determine which model provided a
better account for the data, we compared them using RFX-BMS. As
d to themultiplicative interaction between confidence and urgency. (C) Protected exceed-
modulated by urgency). Warm colors: confidence modulated by urgency. No voxels were
ong evidence that urgencymodulated the slope of the confidence signal. Slight differences
xel dimensions used for these analyses.



Fig. 5. (A) The evidence-independent (EI) covariate. We modeled the EI covariate as an exponentially increasing signal that peaked on the last step. It was included as the second PM in
eachmodel, and thusmodeled shifts in baseline activitywithout regard to decisional evidence. Voxelswere selected based on a conjunction analysis across eachof the fourmodels, and the
values reflect averaged t values across thesemaps. To increase the precision of these spatial estimates, we corrected formultiple comparisons using the voxelwise FWER (p b .05; note also
the increased the range of the color scale). Activity in the bilateral SMA and anterior insular cortices, as well as ventral striatum, midbrain, and bilateral intraparietal sulcus positively co-
varied with the EI covariate. (B) RFX-BMS analysis designed to investigate the effect of confidence in the IPS (for consistency with Figs. 3C and 4C, we illustrate all voxels included in 5A).
Warm colors illustrate amodel with 1 PM: the EI covariate. Cool colors illustrate amodel including 2 PMs: (1) confidence multiplicativelymodulated by urgency, and (2) the EI covariate.
These results suggest that theunivariate BOLD response in the bilateral regions of the IPS did not covarywith the strength of decision evidencebut instead tracked the EI covariate. As noted
above, slight differences in the shapes of the ROIs between the classical and RFX-BMS maps are due to differences in voxel dimensions used for these analyses.
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shown in Fig. 3C, we found that almost all voxels associated with the
twomapswere best fit by the functionwhichwasmultiplicativelymod-
ulated by urgency (peak PXP N .75). If wewere to assume that one of the
two functions is more frequent in the population (a common assump-
tion for model comparison analyses), our results strongly suggest that
it would be the multiplicative interaction between categorical evidence
and urgency (peak unprotected exceedance probability N .98; compare
toDawet al., 2011; denOudenet al., 2010). To confirm that these results
were not related to the behavioral response, we repeated this analysis
but considered only the parametric effects for the non-response steps
(the steps during which participants made a behavioral response were
included in themodel, but as a covariate of no interestwithout paramet-
ric modulation); we again found that themodel tracking themultiplica-
tive interaction between categorical evidence and urgency was more
likely.

Confidence and its interaction with urgency
We found that confidence was represented in the activity of two

large clusters in the bilateral middle frontal gyri, bilateral anterior insu-
lar cortices, bilateral SMA extending to the middle-cingulate, bilateral
OFC, bilateral inferior parietal cortices, bilateral putamen and cerebellar
lobules 4–6 (Fig. 4A; Table A.2). The multiplicative interaction between
confidence and urgency was associated with a highly similar statistical
map (Fig. 4B; Table A.2). RFX-BMS analyses indicated evidence favoring
the multiplicative model across all voxels. This effect was particularly
strong in regions including the bilateral SMA and inferior parietal
lobes, the right middle frontal gyrus, and the right insula (peak
PXP N .99; Fig. 4C; Table A.3).

The evidence-independent (EI) covariate
As described above, for each of the four classicalmodels,we included

2 PMs per mean regressor. The first PM tracked an evidence variable
(categorical evidence, confidence, or the multiplicative interaction of
each with urgency), and the second PM tracked evidence-independent
signals that increased exponentially within each trial (Fig. 1C). A limita-
tion of our design was that signals related to this second PM could not
be ascribed to a single functional role (i.e., the additive effect of urgency
could not be differentiated from other exponentially increasing signals).
Importantly, however, this design allowed us to differentiate signals
that were sensitive to the strength of the decision evidence from those
that were not. It also allowed us to identify activity within regions that
tracked the strength of decision evidence, but also tended to increase
with time (i.e., voxels that were significantly associated with both the
first and second PM). Similar multiplexed signals have been previously
observed in the LIP, and in the primary and premotor cortices of the
non-human primate (Churchland et al., 2008; Thura and Cisek, 2014).
We describe results related to the EI covariate for two reasons. First,
our results indicate that signals tracking the EI covariate could be easily
mistaken for those tracking uncertainty or confidence. Second, we be-
lieve that an important goal for future research will be to characterize
the functional roles of this task-related variance.

As we found strong, widespread activation associated with this re-
gressor, we corrected for multiple comparisons using the more conser-
vative FWER (p b .05). The resulting statistical map (Fig. 5; Table A.5)
showed particularly strong peaks in the bilateral anterior insula, SMA,
bilateral ventral striatum, bilateral substantia nigra, superior colliculus,
regions of the cerebellum (crus II and lobule 6), and bilateral
intraparietal sulcus. The map showed a fairly high degree of overlap
with the confidence signal in regions of the salience network (compare
with Fig. 4), particularly in the pre-SMA and bilateral insula; activity
within these regions was sensitive to strength of the decision evidence
and also tended to increasewith each step. Themodel comparison anal-
ysis indicated that, for all of these voxels, the slope associatedwith these
representations of confidence wasmodulated by urgency, such that the
difference between the high and low evidence states increased expo-
nentially during each trial (see Fig. 4C).

Notably, this analysis suggested that the bilateral IPS, regions that
we predicted would be sensitive to decision evidence (Churchland
et al., 2008; Ploran et al., 2007, 2011; Shadlen and Newsome, 2001;
Yang and Shadlen, 2007), tracked the EI function instead. We found
that this signal could be easily mistaken for confidence as, when we or-
thogonalized the EI covariatewith respect to confidence (thus assigning
shared variance to the confidence PM; seeMumford et al., 2015), the IPS
appeared to track both confidence and urgency. To investigate whether
the BOLD response in the IPS was sensitive to the strength of decision
evidence, we conducted an RFX-BMS analysis in which we compared
a full model, which included a PM tracking confidence and a PM track-
ing the EI function, to a reduced model, which tracked only the EI
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covariate. Results from this analysis provided evidence confirming that
activity in the bilateral IPS was best accounted for by the EI function
alone (bilateral peak PXPs N .90; Fig. 5B).
Discussion

We used a temporally extended design to investigate how partici-
pants integrated probabilistic featural information across time in order
to make advantageous decisions. Importantly, althoughmost of the fea-
tures were informative, they were not perfectly predictive. This kind of
probabilistic decision-making task is common in everyday life; environ-
mental cues often provide only incomplete information about the
course of action thatwill lead to a desired state. In order tomake advan-
tageous decisions within such environments, decision-makers must as-
sign weights to information sources according to a weighting scheme
that approximates the relevant characteristics of the external environ-
ment (Nosofsky et al., 2012; Nosofsky, 1986; Sigala and Logothetis,
2002). In the present experiment, our goal was to investigate the neural
mechanisms underlying our capacity to integrate information across
stimulus features of varying reliability, and to investigate howwemod-
ulate this process based upon the time available to respond. Specifically,
our design allowed us to differentiate signals related to the temporal
evolution of categorical evidence and decision confidence from other
functions that increase monotonically during each trial without regards
to the strength of the decision evidence. Finally, we were also able to
investigate whether urgency modulated the slopes of the two
evidence-dependent functions (categorical evidence and confidence).
Multi-cue integration and categorization

A primary goal of our study was to examine how fundamental
decision-making mechanisms were adapted for categorical decision
making. We utilized a multiple cue probabilistic classification task in
which participants integrated information across individual features ac-
cording to aweighting scheme that closely approximated the normative
weights used to disburse feedback (Fig. 2). Previous work provides evi-
dence that participants sometimes use heuristic strategies based on the
consideration of only the most informative features when performing
the weather prediction task (Gluck et al., 2002; Meeter et al., 2006).
The extensive training in our task, and the temporally extended para-
digmwherein participants were exposed not only to the uncertainty as-
sociated with the informational content of the features but also to the
uncertainty about what features would compose the final stimulus,
may have encouraged participants to consider each of the individual
features during deliberation.
Categorical evidence

We found that evidence supporting a specific category and its asso-
ciated responsewas tracked by somatomotor regions including primary
motor cortex, primary somatosensory cortex, posterior putamen, and
cerebellum. Activity appeared to be effector specific, such that activity
within cortical somatomotor regions was positively correlated with
evidence towards the contralateral response, while activity within
somatomotor regions of the cerebellum was positively correlated with
evidence for the ipsilateral response, consistent with the crossed nature
of cortical-cerebellar projections. These observations fit with an inten-
tional framework where these decisions can be made with regards to
propositions concerning potential behavioral responses (Gold and
Shadlen, 2003; Shadlen et al., 2008). Additionally, procedural category
learning mechanisms are often effector specific (Cantwell et al., 2015;
Spiering andAshby, 2008), and similar effector-specificitywas observed
in the temporally extended fMRI studies previously discussed (Gluth
et al., 2012; Wheeler et al., 2014).
Confidence

We modeled confidence as the unsigned difference in evidence for
each category (Ding and Gold, 2010; Hebart et al., 2014; Kepecs and
Mainen, 2012; Vickers and Packer, 1982) and tracked its evolution
prior to decision commitment (Gherman and Philiastides, 2014). Our
confidence regressor, therefore, tracked the total amount of information
accumulated from the amoeba stimulus, without regards to specific
motor responses. Such a signalmay play several important roles. On dif-
ficult trials, it may allow decision-makers to opt out and choose safe
bets, rather than gambling on risky choices (Gherman and Philiastides,
2014; Kepecs et al., 2008; Kiani and Shadlen, 2009). It may also allow
decision-makers to wait for an appropriate amount of time for probabi-
listic reward (Kepecs and Mainen, 2012; Kepecs et al., 2008; Lak et al.,
2014). Additionally, in conjunction with urgency, it may provide
important information regarding the value of accumulating additional
decision evidence.

Within prefrontal cortex, dorsolateral, rostrolateral, ventromedial,
and orbitofrontal cortical regions have been reported to be sensitive to
confidence (Bowman et al., 2012; De Martino et al., 2013; Heekeren
et al., 2004, 2006; Philiastides et al., 2011; Rolls et al., 2010a; Tobler
et al., 2007). These regions were also active in our study, with the nota-
ble absence of the ventromedial prefrontal cortex; due perhaps to the
minimal reward and value-processing demands associated with our
task (Basten et al., 2010; Smith et al., 2010). Within subcortical struc-
tures, we also found that the dorsal striatum and dopaminergic mid-
brain also tracked confidence. These regions are also known to be
sensitive to confidence (Ding and Gold, 2010; Schwartenbeck et al.,
2014), to be recruited during performance of the weather prediction
categorization task specifically (Poldrack et al., 1999; Shohamy et al.,
2008), and to be sensitive to categorization demands more broadly
(Braunlich et al., 2015; Lopez-Paniagua and Seger, 2011; Seger et al.,
2015, 2010; Waldschmidt and Ashby, 2011).

Many studies have also found decisional confidence to be associated
with activity in the inferior parietal lobe and in medial frontal regions,
which are commonly associated with the ventral attention or salience
networks. We found that these regions, as well as the bilateral anterior
insular cortices, also tracked decision confidence. Together, these re-
gions are thought to play an important role in the bottom-up orienting
of attention to salient external events (Buckner et al., 2013; Ciaramelli
et al., 2008; Medford and Critchley, 2010; Menon and Uddin, 2010;
Menon, 2011; Sridharan et al., 2008). It is therefore interesting to note
that these regions tracked the strength of the decisional evidence pro-
vided by the stimulus, as the salience network may play an important
role in assigning attentional weights to behaviorally relevant sources
of information. It is also interesting to note that these regions of theme-
dial frontal cortex and bilateral anterior insula strongly overlappedwith
the statisticalmaps representing the EI covariate, indicating that activity
within these regions tracked confidence and also increased exponen-
tially during each trial.

Gain modulation of the evidence-dependent functions by urgency

There are a number ofways thatflexible adjustments to the SATmay
be implemented in the brain (for full review, see Bogacz et al., 2010).
One mechanism is analogous to manipulation of the decision boundary
itself; through modulation of the cortico-basal ganglia circuit (the
“striatal” hypothesis of the SAT). Another hypothetical mechanism un-
derlying flexible modulation of the SAT is through modulation of base-
line activity of neuronal pools involved in evidence accumulation (the
“changing baseline” hypothesis). At the algorithmic level (in the sense
of Marr, 1982), this has the effect of moving representations of decision
evidence closer to the decision threshold. The mechanism we consider
in the present paper, however, is gain modulation of decision evidence,
which has the effect of modulating the slopes of the evidence functions
so that the differences between high and low evidence states increases
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as a response deadline approaches. Mathematical models provide evi-
dence that such a mechanism represents an effective way to modulate
the temporal dynamics of deliberative processes (Cisek et al., 2009;
Ditterich, 2006a; Niyogi and Wong-Lin, 2013; Standage et al., 2011,
2013; Thura et al., 2012), and experimental work has shown that activ-
ity in the LIP and in the pre- and primary motor cortices in the non-
human primate closely resembles predictions made by these models
(Ditterich, 2006a; Thura and Cisek, 2014).

Thus, we predicted that urgency would modulate the slope of the
categorical evidence signal.We also predicted that the confidence signal
would show this effect if categorical evidence is multiplicatively modu-
lated by urgency and if confidence is at least partially derived from the
unsigned difference in activity between category-selective neuronal
pools. This framework is supported by theoretical and experimental
work (e.g., Insabato et al., 2010; Rolls et al., 2010a), and by recent
work demonstrating that modulation of response-specific representa-
tions in the premotor cortex can influence subjective estimates of confi-
dence (Fleming et al., 2015). Our results are in accordance with this
framework, as we found that representations of both categorical evi-
dence and confidence were best fit by the functions tracking the multi-
plicative effects of urgency; however, more research is needed to
understand the nature and loci of this modulatory signal.

Specifically, while our task imposed a strict response deadline on the
fourth step, in real-world environments, decisions aboutwhen to decide
are often more difficult. Thus, while real-world decisions often require
participants to consider fine-grained differences in costs associated
with deliberation and possible benefits associatedwith gambling on un-
certain choices, our task minimized these effects and thus inflated the
salience of the last step. This allowed us tomodel urgency as amonoton-
ically increasing function that peaked at this step, but it should be noted
that urgency functions associatedwith real-world decisions are likely to
be more variable. In addition, as the amount of information presented
during each trial was limited to four features, accurate information ac-
cumulation required participants to temper the probabilistic informa-
tion provided by each partial feature sequence (i.e., the partial sets of
features shown on steps 1, 2, or 3) by the uncertainty concerning the
feature(s) not yet presented during each trial. Although we modeled
this effect (see Fig. 1C), it is unknown whether this aspect of the task
may also have interacted with representations of the urgency function.

The evidence-independent (EI) covariate

Interpretation of the EI covariate in isolation is difficult, as signals
showing monotonically ramping activity might be related to multiple
functions expected to increase during each trial (e.g., urgency or cogni-
tive demands associated with an increasing number of features). The
primary reason for including it in each model was to differentiate
signals sensitive to the strength of the decision evidence from others
that were evidence-independent. This is important, as signals reflecting
information accumulation can be easily mistaken for those associated
with decision thresholding (Cisek et al., 2009; Simen, 2012; Thura
et al., 2012).

Our results suggest that the pattern of BOLD response we observed
in the bilateral posteromedial portion of IPS may represent such a sig-
nal; we found that this regionwas insensitive to the strength of decision
evidence, but positively covaried with the EI covariate. However, both
previous fMRI studies that manipulated evidence for, and against, spe-
cific categories within single trials (Gluth et al., 2012; Wheeler et al.,
2014) also did not identify patterns of activity in the IPS that would be
consistent with an information-accumulation account. Wheeler et al.
suggested that activity within these regions was most consistent with
an account related to cognitive effort or to time on task, while Gluth
et al. noted that bilateral IPS activity at the beginning of each trial in-
versely correlatedwith decision time. Taken together, these results sug-
gest that the univariate BOLD response in the IPS may largely reflect
processes associated with decision thresholding, rather than the
accumulation of decision evidence. Regardless of the function of this sig-
nal, however, these results suggest that monotonically increasing BOLD
signals previously observed in the IPS during temporally extended
decision-making tasks (e.g., Ploran et al., 2007, 2011)maybe insensitive
to the strength of decision evidence. Our results confirm, however, that
other regions indicated in these studies, notably the rightmiddle and in-
ferior frontal gyri, the left cerebellar crus I, the bilateral anterior insula,
the medial prefrontal cortex/pre-SMA, the inferior parietal lobe, and
the caudate are sensitive to the strength of decision evidence.

It is important to note, however, that recent studies employingmul-
tivariate pattern analyses (MVPA) have reported success in decoding
categorical representations from these regions (e.g., Christophel et al.,
2012; Jeung, 2014), and individual neurons in the non-human primate
homologue of the IPS (the LIP; Sereno et al., 2001), are known to track
both categorical evidence and urgency (Kira et al., 2015; Yang and
Shadlen, 2007). It is thus likely that these regions are sensitive to deci-
sion evidence, but that our results reflect differences between neuroim-
agingmethods and analyses. Specifically, we suggest that the univariate
BOLD responsemay not reflect the information accumulation processes
which likely occur within these regions, but instead may reflect
neuromodulatory inputs, such as urgency, that might operate broadly
across neuronal populations with different stimulus tunings (Chance
et al., 2002; Douglas et al., 1995; Niyogi and Wong-Lin, 2013; Salinas
and Abbott, 1996; Salinas and Thier, 2000; Standage et al., 2013) and
are thought to represent an important driver of the cortical hemody-
namic response (Logothetis, 2008).
Conclusions

Real-world environments often require decision-makers to inte-
grate information across time and across multiple information sources.
To do so effectively, theymustweigh different information channels ac-
cording to their estimated reliability. Theymust also adjust the timing of
their behavioral responses tomaximize transient opportunities to reach
desirable states. In the present study, we build on the small number of
experiments that have used temporally extended paradigms in con-
junction with fMRI to track the accumulation of decision evidence dur-
ing deliberation. Through use of model-based analyses, we were able to
disentangle the temporal evolution of multiple task-related signals as
participants deliberated about impending choices. We found that ur-
gency likely modulated representations of categorical evidence and
confidence such that the difference between high and low evidence
states tended to negatively covary with the time available to respond.
We also found that the univariate signal observed in the bilateral IPS in-
creased exponentially during each trial, but was insensitive to the
strength of decision evidence, and may thus reflect a neuromodulatory
effect rather than information accumulation (see also Gluth et al., 2012
andWheeler et al., 2014). An important goal for future research will be
to investigate the functional role(s) of the signal tracking the evidence-
independent covariate.
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Model Size
(mm3)

x y z t BA Region
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Appendix A

(See Table A.5.)
Table A.1
Classical results: categorical evidence and categorical evidence modulated by urgency.
Correction formultiple comparisonswas performed through consideration of the topolog-
ical false discovery rate (initial cluster forming threshold: p b .001, q b .05).

Model Size
(mm3)

x y z t BA Region

CmLogLR (left)
2434 38 −18 54 10.6 4 Precentral_R
219 44 −20 22 6.92 48 Rolandic_Oper_R
176 6 −18 44 5.99 23 Cingulum_Mid_R
172 −14 −52 −18 5.7 19 Cerebelum_4_5_L
74 32 −2 −4 4.64 48 Putamen_R

CmLogLR (right)
1151 −34 −24 58 8.95 4 Precentral_L
82 18 −50 −20 5.01 37 Cerebelum_4_5_R

CmLogLR (left) * Urgency
2780 38 −18 54 11.03 4 Precentral_R
248 44 −20 20 6.91 48 Rolandic_Oper_R
261 6 −20 44 6.02 23 Cingulum_Mid_R
224 −14 −52 −20 5.58 19 Cerebelum_4_5_L
98 32 −4 −2 4.52 48 Putamen_R

CmLogLR (right) * Urgency
1208 −34 −24 58 8.93 4 Precentral_L
109 18 −50 −20 5.24 37 Cerebelum_4_5_R

Table A.2
RFX-BMS results: CmLogLR and CmLogLR modulated by urgency. Each map was
thresholded to included voxels where the model provided the best fit. The protected ex-
ceedance probability (PXP) provides an estimate of the probability that themodel ismore
frequent in the population, above and beyond chance.

Model Size
(mm3)

x y z PXP BA Region

CmLogLR
30 48 −25 44 0.558 3 Postcentral_R
12 42 −22 14 0.522 48 Heschl_R

CmLogLR * Urgency
784 36 −25 68 0.755 6 Precentral_R
352 −39 −25 65 0.731 4 Precentral_L
68 6 −22 47 0.636 23 Cingulum_Mid_R
35 21 −52 −19 0.634 37 Cerebelum_4_5_R
64 45 −25 26 0.624 48 SupraMarginal_R
64 −15 −58 −22 0.62 37 Cerebelum_6_L
31 36 −4 2 0.618 48 Putamen_R

Table A.3
Classical results: confidence and confidence modulated by urgency. Correction for multi-
ple comparisons was performed through consideration of the topological false discovery
rate (initial cluster forming threshold: p b .001, q b .05).

Model Size
(mm3)

x y z t BA Region

Confidence
1016 −32 26 40 8.01 9 Frontal_Mid_L
7901 28 −6 4 7.32 48 Putamen_R

14 12 60 6.77 6 Supp_Motor_Area_R
−40 8 −4 6.6 48 Insula_L
12 −28 40 6.08 – Cingulum_Mid_R
−16 −26 10 5.86 – Thalamus_L

1106 66 −48 14 7.19 22 Temporal_Mid_R
54 −34 40 5.9 40 SupraMarginal_R

129 −12 22 60 7.17 8 Supp_Motor_Area_L
173 −28 46 −8 7.11 11 Frontal_Mid_Orb_L
1930 −50 −20 50 6.5 4 Postcentral_L

−18 −36 64 5.37 4 Postcentral_L
173 −50 −60 8 5.96 37 Temporal_Mid_L

333 −62 −24 26 5.64 48 SupraMarginal_L
747 −18 −72 −30 5.56 – Cerebelum_Crus1_L

−32 −42 −32 5.29 37 Cerebelum_6_L
109 30 54 −14 5.4 11 Frontal_Mid_Orb_R
163 6 −54 −18 5.16 18 Vermis_4_5
300 −14 −78 2 5.13 18 Lingual_L
98 12 −84 24 5.09 19 Cuneus_R

Confidence by Urgency
1052 −32 26 40 7.73 9 Frontal_Mid_L
181 −28 46 −8 7.6 11 Frontal_Mid_Orb_L
11730 −48 −60 6 7.29 37 Temporal_Mid_L

−12 −44 68 7.01 5 Precuneus_L
28 −6 4 6.95 48 Putamen_R
−40 −20 46 6.89 4 Postcentral_L
14 −28 42 6.61 – Cingulum_Mid_R
−30 −8 −16 6.44 20 Hippocampus_L
14 14 60 6.25 8 Supp_Motor_Area_R
−52 −52 46 5.89 40 Parietal_Inf_L
20 20 −14 5.25 11 Frontal_Sup_Orb_R

139 −10 22 60 6.49 8 Supp_Motor_Area_L
1332 66 −18 32 6.33 2 SupraMarginal_R

66 −48 14 6.27 22 Temporal_Mid_R
682 16 −84 32 6.15 19 Cuneus_R
1724 −22 −84 −38 6.14 – Cerebelum_Crus2_L

−8 −46 −18 5.79 19 Cerebelum_4_5_L
6 −70 −38 5.25 – Vermis_8
−36 −50 −42 4.96 – Cerebelum_7b_L

Table A.4
RFX-BMS results: confidencemodulated byurgency. Thismodelwas compared to the con-
fidencemodel that was notmodulated by urgency. Eachmapwas thresholded to included
voxels where the model provided the best fit, and no voxels were best accounted for by
the unmodulated model. The protected exceedance probability (PXP) provides an esti-
mate of the probability that the model is more frequent in the population, above and be-
yond chance.

Model Size
(mm3)

x y z PXP BA Region

Confidence by Urgency
2166 3 20 44 N0.999 32 Supp_Motor_Area_L

−33 −64 53 0.999 7 Parietal_Sup_L
3 −7 68 0.969 6 Supp_Motor_Area_R
−60 −22 23 0.957 48 Postcentral_L
−27 −10 65 0.937 6 Precentral_L
−6 −52 59 0.936 5 Precuneus_L
−3 −28 35 0.934 23 Cingulum_Mid_L
−48 −67 17 0.897 39 Temporal_Mid_L

448 45 −46 56 0.999 40 Parietal_Sup_R
57 −52 −4 0.928 21 Temporal_Inf_R
60 −16 38 0.87 43 Postcentral_R

879 39 35 29 0.998 46 Frontal_Mid_R
42 20 −4 0.997 47 Insula_R

319 −42 29 35 0.996 45 Frontal_Mid_L
−30 53 17 0.914 46 Frontal_Mid_L

124 6 −79 11 0.995 17 Calcarine_R
69 −3 −82 17 0.987 18 Cuneus_L
28 30 56 −4 0.986 11 Frontal_Sup_Orb_R
568 −9 −73 5 0.98 17 Lingual_L

−30 −67 −28 0.978 19 Cerebelum_Crus1_L
468 −33 17 8 0.963 48 Insula_L

−33 −13 −22 0.7 20 Hippocampus_L
48 −3 23 59 0.952 8 Supp_Motor_Area_L
34 9 −16 8 0.947 – Thalamus_R
45 −30 59 −1 0.912 11 Frontal_Sup_Orb_L
83 −12 −19 8 0.902 – Thalamus_L
19 −51 −73 11 0.876 37 Occipital_Mid_L
39 57 −31 −7 0.867 21 Temporal_Mid_R
33 9 −49 59 0.832 5 Precuneus_R



Table A.5
Classical results: the evidence-independent (EI) function. Voxels included in thismap rep-
resent a conjunction analysis across the four classicalmodels tested. T values reflect the av-
erage values across these models. Correction for multiple comparisons was performed
through consideration of the familywise error rate (p b .05).

Model Size (mm3) x y z t BA Region

The Evidence-Independent (EI) Function
430 38 22 −6 19.04 47 Insula_R
172 −12 12 −4 14.43 25 VentralStriatum
522 28 −64 44 14.08 7 Angular_R
72 −26 −68 38 13.51 7 Occipital_Mid_L
860 4 16 44 13.36 32 Cingulum_Mid_R
63 46 14 32 13.05 44 Frontal_Inf_Oper_R
187 −34 18 −2 12.32 47 Insula_L
279 −28 −52 46 11.43 7 Parietal_Inf_L
180 12 12 4 10.77 25 Caudate_R
42 −2 6 32 10.52 24 Cingulum_Mid_L
109 −4 −30 32 10.51 23 Cingulum_Mid_L
17 46 4 38 10.4 6 Precentral_R
44 2 −56 −36 10.39 – Vermis_9
98 6 −64 48 10.16 7 Precuneus_R
31 10 28 28 9.76 32 Cingulum_Ant_R
19 −42 0 32 9.68 6 Precentral_L
50 −10 −72 44 9.51 7 Precuneus_L
42 −6 −80 −26 9.49 – Cerebelum_Crus2_L
27 −40 −58 −36 9.45 – Cerebelum_Crus1_L
27 8 −70 −28 9.09 – Vermis_7
20 −32 −66 −30 9.05 19 Cerebelum_Crus1_L
36 50 −42 52 8.81 40 Parietal_Inf_R
23 48 28 28 8.73 45 Frontal_Inf_Tri_R
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