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Abstract

Through selective attention, decision-makers can learn to ignore behaviorally-irrelevant

stimulus dimensions. This can improve learning and increase the perceptual

discriminability of relevant stimulus information. Across cognitive models of

categorization, this is typically accomplished through the inclusion of attentional

parameters, which provide information about the importance assigned to each stimulus

dimension by each participant. The effect of these parameters on psychological

representation is often described geometrically, such that perceptual differences over

relevant psychological dimensions are accentuated (or stretched), and differences over

irrelevant dimensions are down-weighted (or compressed). In sensory and association

cortex, representations of stimulus features are known to covary with their behavioral

relevance. Although this implies that neural representational space might closely

resemble that hypothesized by formal categorization theory, to date, attentional effects

in the brain have been demonstrated through powerful experimental manipulations

(e.g., contrasts between relevant and irrelevant features). This approach sidesteps the

role of idiosyncratic conceptual knowledge in guiding attention to useful information

sources. To bridge this divide, we used formal categorization models, which were fit to

behavioral data, to make inferences about the concepts and strategies used by

individual participants during decision-making. We found that when greater attentional

weight was devoted to a particular visual feature (e.g., “color”), its value (e.g., “red”)

was more accurately decoded from occipitotemporal cortex. We additionally found that

this effect was sufficiently sensitive to reflect individual differences in conceptual

knowledge, indicating that occipitotemporal stimulus representations are embedded

within a space closely resembling that formalized by classic categorization theory.

Keywords: Concepts, Selective Attention, Occipitotemporal Cortex
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Occipitotemporal Representations Reflect Individual Differences in Conceptual

Knowledge

Introduction

Through selective attention, knowledge of abstract concepts can emphasize

relevant stimulus features. For example, while the size of garments is critical when

choosing what to purchase, weight may be more important when deciding how to ship

them. The attention devoted to individual features is flexibly-modulated according to

current goals, transient contextual demands, and reflects evolving conceptual knowledge

(Goldstone, 2003; Tversky, 1977). In formal categorization models, a way to account for

this flexibility is through inclusion of attentional parameters, which reflect the influence

of each dimension on the category decision (e.g., Kruschke, 1992; Love, Medin, &

Gureckis, 2004; Nosofsky, 1986). These attentional parameters are often described as

“warping” multidimensional psychological space, such that differences along relevant

stimulus dimensions are accentuated (or “stretched”) and differences along irrelevant

dimensions are down-weighted (or “compressed”; Figure 1). Here, we directly test this

classic idea by investigating whether the strength of neural stimulus feature

representations are modulated by these attentional parameters. Importantly, we

attempt to relate individual differences in conceptual knowledge (as revealed by model

fits of attentional parameters) to individual differences in neural representation (as

revealed by decoding stimulus features in fMRI data). In doing so, we aim to bridge

behavioral and neural levels of analysis at the individual level using cognitive models.
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Figure 1 . Example: Attention Influences Psychological Space. Left: In an
object identification task, both psychological dimensions should receive equivalent
attention, as they are equally relevant. Right: In a one-dimensional rule-based
categorization task, only a single dimension is relevant (in this example, size), and
decision-makers could ignore the irrelevant dimension (color). This is often described as
“warping” psychological space such that differences along relevant dimensions are
accentuated (or “stretched”), and differences along irrelevant dimensions are
down-weighted (or “compressed”).

When identifying specific objects, agents must typically consider all stimulus

features, and the psychological distance between stimuli closely reflects their perceptual

attributes (Shepard, 1957; Townsend & Ashby, 1982). During categorization, however,

groups of distinct stimuli must be treated equivalently, and both learning and

generalization can be improved by selectively attending to relevant stimulus dimensions

(Nosofsky, 1986; Shepard, Hovland, & Jenkins, 1961). Although categorization models

differ in how stimuli are represented in memory (e.g., as individual exemplars, as

prototypes, or as clusters that flexibly reflect environmental structure; Love et al., 2004;

Minda & Smith, 2002; Nosofsky, 1987; Nosofsky & Zaki, 2002; Smith & Minda, 1998;

Zaki, Nosofsky, Stanton, & Cohen, 2003), they similarly assume that categorization

involves learning to distribute attention across stimulus features so as to optimize

behavioral performance. Although they differ in their mathematical details, these

models also posit that endogenous (i.e., “top-down”) attentional control (Miller &

Cohen, 2001; Tsotsos, 2011) can modulate the influence of the exogenous (or

perceptual) stimulus dimensions on the behavioral choice. The attentional parameters

play a key role in allowing the models to capture patterns of human generalization

across different goals and different rules. As they also predict human eye-movements

during category decision-making (e.g., Rehder & Hoffman, 2005a, 2005b), they are

thought to reflect the strategies used by individual decision-makers to integrate
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information from the external world.

In the brain, effects of endogenous attention have been observed across the visual

cortical hierarchy (Buffalo, Fries, Landman, Liang, & Desimone, 2010; Jehee, Brady, &

Tong, 2011; Kamitani & Tong, 2005, 2006; Luck, Chelazzi, Hillyard, & Desimone, 1997;

Motter, 1993). A general finding is that when attention is devoted to a specific visual

feature, its neural representation is more accurately decoded. For instance, in human

fMRI, when multiple visual gratings are concurrently presented, representations of

attended orientations in areas V1-V4 are more easily decoded than those that are

unattended (Jehee et al., 2011; Kamitani & Tong, 2005). Similarly, when random dot

stimuli move in multiple directions, representations of attended motion directions in

area MT+ are more easily decoded than those that are unattended (Kamitani & Tong,

2006). Whereas these studies have relied on explicit cues to guide attention to relevant

aspects of the stimulus array, in real-world environments, decision-makers must

typically rely on knowledge gained through past experience in order to selectively

attend to relevant information sources.

Categorization tasks mirror this aspect of real-world environments;

decision-makers must rely on learned conceptual knowledge in order to selectively

attend to relevant stimulus dimensions. Several studies have investigated whether

neural representations of exogenous information sources are modulated by learned

conceptual knowledge (e.g., Folstein, Palmeri, & Gauthier, 2013; Li, Ostwald, Giese, &

Kourtzi, 2007; Sigala & Logothetis, 2002). Sigala and Logothetis (2002), for instance,

trained macaques to categorize abstract images, which varied according to four stimulus

dimensions. Neural representations of the two behaviorally-relevant stimulus dimensions

(i.e., the dimensions that reliably predicted the correct response) in the inferior

temporal lobe were enhanced relative to those of the irrelevant dimensions. Using fMRI

with human participants, Li et al. (2007) investigated whether neural representations of

stimulus motion and shape were influenced by their relevance to the active

categorization rule. Using multivariate pattern analysis (MVPA), they similarly found

that representations of these stimulus dimensions reflected their relevance to the active
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rule.

Across studies involving explicit attentional cues and categorization studies

involving learned conceptual knowledge, a general finding is that occipitotemporal

representations of behaviorally-relevant information sources are enhanced relative to

those that are irrelevant (this may not hold for integral stimulus dimensions; Garner,

1976). These effects are compelling, as they imply that occipitotemporal

representational space may closely resemble that conceptualized by classic cognitive

theory (e.g., Kruschke, 1992; Love et al., 2004; Nosofsky, 1986). Specifically, it may

expand and contract, along axes defined by perceptually-separable stimulus dimensions

(Garner, 1976), in ways that closely reflect the idiosyncratic concepts and strategies

used by individual participants during decision-making.

Previous studies have relied on contrastive analyses, in which neural

representations of attended stimulus dimensions are compared to those of unattended

dimensions. Although statistically-powerful, this approach defines selective attention in

terms of the experimental paradigm (but see O’Bryan, Walden, Serra, & Davis, 2018),

and therefore sidesteps effects associated with individual differences in conceptual

knowledge (e.g., Craig & Lewandowsky, 2012; Little & McDaniel, 2015; McDaniel,

Cahill, Robbins, & Wiener, 2014; Raijmakers, Schmittmann, & Visser, 2014). These

effects can be substantial, particularly for ill-defined categorization-problems (such as

the 5/4 categorization task), which are common in every-day life (Hedge, Powell, &

Sumner, 2017; Johansen & Palmeri, 2002). Here, we bridge this divide by combining

model-based fMRI (Palmeri, Love, & Turner, 2017; Turner, Forstmann, Love, Palmeri,

& Van Maanen, 2017) with multivariate pattern analyses. This allowed us to abstract

away from individual differences in neural topography (Haxby et al., 2001; Haynes,

2015; Kriegeskorte & Kievit, 2013), to investigate whether neural stimulus

representations reflect individual differences in conceptual knowledge. Specifically, we

sought to investigate whether the attentional parameters derived from formal

categorization models predict contortions of occipitotemporal representational space

during decision-making.
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We investigated this hypothesis using two publicly available datasets (osf.io). In

the first (Mack, Preston, & Love, 2013), participants categorized abstract stimuli that

varied according to four binary dimensions (Figure 2.A), according to a categorization

strategy they learned prior to scanning. In the original paper, the authors fit both the

Generalized Context Model (GCM; Nosofsky, 1986) and the Multiplicative Prototype

Model (Nosofsky, 1987; Nosofsky & Zaki, 2002) to the behavioral data, and used them

to compare exemplar and prototype accounts of occipitotemporal representation. Using

representational similarity analysis (Kriegeskorte, Mur, & Bandettini, 2008), Mack et

al. (2013) additionally identified regions of the brain (lateral occipital cortex, parietal

cortex, inferior frontal gyrus, and insular cortex) sensitive to the

attentionally-modulated pairwise similarities between stimuli. Although these results

(particularly those in lateral occipital cortex) imply that neural representations of the

individual stimulus features might be modulated by selective attention, in principle, this

could also reflect modulation within an abstract representational space where stimulus

features are not individually represented. For instance, while visual cortex reflects

sensory input (and is known to represent individual stimulus dimensions), prefrontal

cortex can flexibly represent conjunctions of features, abstract rules, and category

boundaries in a goal-directed manner. Representations in parietal cortex display

intermediate characteristics, as they can reflect both sensory and decisional factors

(Brincat, Siegel, Nicolai, & Miller, 2017; Jiang et al., 2007; Li et al., 2007).

In the second dataset (Mack, Love, & Preston, 2016), participants learned, while

scanning, to categorize images of insects that varied according to three binary

perceptual dimensions (Figure 2.B), according to type I, type II and type VI problems

described by Shepard et al. (1961).1 Importantly, although the same stimuli were

included in each task, the degree to which each of the features predicted the correct

choice differed between rules. The authors fit the SUSTAIN learning model (Supervised

and Unsupervised STratified Adaptive Incremental Network; Love et al., 2004) to the

behavioral data, and used it to investigate hippocampal involvement in the development

1In their paper, Mack et al. (2016) focus on effects associated with the type I and type II rules.
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Figure 2 . Stimuli. A) Two of the 16 stimuli used in the “5/4” experiment are
illustrated. The stimuli varied according to four binary perceptual dimensions: color,
size, shape and position. B) Two of the eight stimuli used in the SHJ experiment are
illustrated. The stimuli were pictures of insects that varied according to three binary
dimensions: mandible shape (highlighted in green), antennae thickness (highlighted in
blue), and leg thickness (highlighted in red). For both experiments, the mapping of
visual dimension to its role in each category structure (Tables 1 and 2) was randomized
for each participant.

of new conceptual knowledge. Using representational similarity analysis, they found

that SUSTAIN successfully predicted the pairwise similarities between hippocampal

stimulus representations across rule-switches. This suggests that hippocampal

representations are updated according to goal-directed attentional selection of stimulus

features.

Methods

Description of Datasets

In both experiments, participants categorized stimuli that were characterized by

multiple perceptually-separable stimulus dimensions. As the mapping of perceptual

attributes to their role in each category structure was randomized for each participant,

it is possible to differentiate effects associated with intrinsic perceptual stimulus

attributes from effects of behavioral relevance. For example, while color strongly
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predicted the correct category choice for some participants, it provided unreliable

informative for others. In both experiments, participants were not instructed as to

which cues were informative, and learned to perform each task through trial-and-error.

We used the GCM for the first dataset (the winning model from Mack et al.

2013), as participants learned how to perform the categorization task prior to scanning.

We used SUSTAIN for the second dataset, as it learns on a trial-by-trial basis, and

participants learned to perform each task during scanning. SUSTAIN was additionally

fit in such a way that the learning of one task carried over to the next. Importantly,

although the GCM and SUSTAIN differ in how stimuli are represented in memory (i.e.,

as exemplars or clusters), they similarly posit that attention “contorts” psychological

space, as illustrated in Figure 1. Thus, these studies and models provide a good test of

whether attention weights in successful cognitive models are plausible at both

behavioral and neural levels of analysis.

The “5/4” Dataset. The first dataset (Mack et al., 2013) was collected while

20 participants (14 Female) categorized abstract stimuli (Figure 2.A), which varied

according to four binary stimulus dimensions (size: large vs. small, shape: circle vs.

triangle, color: red vs. green, and position: left vs. right). Prior to scanning, they

learned to categorize the stimuli according to the “5/4” categorization task (Medin &

Schaffer, 1978) through trial-and-error. During this training session, participants were

shown only the first nine stimuli shown in Table 1 (i.e., five category “A” members:

A1-A5 and four category “B” members: B1-B4), and experienced 20 repetitions of each

stimulus. During the anatomical scan, they additionally performed a “refresher” task,

involving four additional repetitions on each training item. Each training trial involved

a 3.5 second stimulus presentation period in which participants made a button press.

Following the button press, a fixation cross was shown for 0.5 seconds, and feedback

was then presented for 3.5 seconds. Feedback included information about the correct

category, and about whether the response was correct or incorrect. During scanning,

participants were required to categorize not only the training items, but also the seven

transfer stimuli (i.e., T1-T7). In the scanner, stimuli were presented for 3.5 seconds on
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each trial, no feedback was provided, and stimuli were separated by a 6.5 second

intertrial interval. Over six runs, each of the 16 stimuli were presented three times. The

order of the stimulus presentations were randomized for each participant.

Stimulus D1 D2 D3 D4
A1 1 0 0 0
A2 1 0 1 0
A3 0 1 0 0
A4 0 0 1 0
A5 0 0 0 1
B1 1 1 0 0
B2 1 0 0 1
B3 0 1 1 1
B4 1 1 1 1
T1 0 1 1 0
T2 1 1 1 0
T3 0 0 0 0
T4 1 1 0 1
T5 0 1 0 1
T6 0 0 1 1
T7 1 0 1 1

Table 1
The “5/4” Category Structure. Prior to scanning, participants learned, through
trial and error, to categorize the first nine stimuli (category “A”: A1-A5; category “B”:
B1-B4) illustrated in Figure 2.A. During scanning, they categorized both the training
and the transfer (T1-T7) stimuli. Perceptual stimulus dimensions (Figure 2) were
pseudo-randomly assigned to category dimensions for each participant.

Whole-brain images were acquired 3T GE Medical Systems Signa scanner.

Structural images were collected using a T2-weighted, flow compensated spin-echo pulse

sequence (TR=3s, TE=68ms, 256×256 matrix, 1×1mm in-plane resolution, 33 slices,

3mm slice thickness, gap=0.6mm). An additional T1-weighted 3D SPGR structural

image was also collected (256×256×172 matrix, 1×1×1.3mm voxels). Functional

images were collected using an echo planar imaging sequence (TR=2s, TE=30.5ms, flip

angle=73◦, 64×64 matrix, 3.75×3.75 in-plane resolution, bottom-up interleaved

sequence, gap=0.6mm).

The SHJ Dataset. In the second dataset (Mack et al., 2016), 23 right-handed

participants (11 Female, mean age = 22.3 years) categorized images of insects (Figure
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2.B) varying along three binary dimensions (legs: thick vs. thin, antennae: thick vs.

thin, and mandible: pincer vs. shovel). We excluded data from two participants who

each had corrupted data on one run. This resulted in 21 participants for the final

analyses. During scanning, participants learned to categorize the stimuli according to

the type I, type II, and type VI problems described by Shepard et al. (1961). In the

type I problem, the optimal strategy required attending to a single stimulus dimension

(e.g., “legs”) that perfectly predicted the category label, while ignoring the other two

dimensions. In the type II problem, the optimal strategy was a logical XOR rule, in

which two stimulus features had to be considered together. In the type VI problem, all

stimulus features were relevant to the decision, and participants had to learn the

mapping between individual stimuli and the category label. To maximally differentiate

endogenous and exogenous factors, the irrelevant feature in the type II rule was used as

a relevant feature of the type I problem for each participant.

Stimulus D1 D2 D3 Type1 Type2 Type6
1 0 0 0 A A A
2 0 0 1 A B B
3 0 1 0 A B B
4 0 1 1 A A A
5 1 0 0 B A B
6 1 0 1 B B A
7 1 1 0 B B A
8 1 1 1 B A B

Table 2
SHJ Category Structures. Participants learned by trial-and-error to perform the
type I (a one-dimensional rule-based categorization task), type II (a two-dimensional
XOR rule-based categorization task), and type VI (a three-dimensional task requiring
memorization of the individual stimuli) problems during scanning. For each participant,
perceptual stimulus dimensions (Figure 2) were randomly assigned to these abstract
category dimensions.

Each problem was performed across four scanner runs. While all of the

participants learned to perform the type VI problem first, the order of the type I and

type II problems was then counterbalanced across participants. Each trial consisted of a

3.5 second stimulus presentation period, a jittered 0.5-4.5 second fixation period, and
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feedback. Feedback was presented for 2 seconds and consisted of an image of the

presented insect, as well as text indicating whether the response was correct or incorrect.

Each trial was separated by jittered intertrial interval (4-8 seconds), which consisting of

a fixation cross. Each run included four presentations of each of the eight stimuli.

For consistency across datasets, we used the group-derived region of interest

(ROI) used in “5/4” dataset (Figure 3.B), and performed a similar analysis. As

participants in the SHJ experiment learned to perform the type I, type II and type VI

problems during scanning, we mirrored the strategy used by the original authors, and

divided the scanning sessions into early (first two runs of each problem) and late

learning epochs (last two runs of each problem). We investigated the relationship

between occipitotemporal representation and attention only during this late learning

phase, in which behavior had largely stabilized.

Whole-brain images were acquired in a 3T Siemens Skyra Scanner. Anatomical

images were collected using a T1-weighted MPRAGE sequence (TR=1.9s, TE=2.43ms,

256×256 matrix, 1mm isotropic voxels, flip angle=9◦, FOV=256mm). Functional

images were acquired using a T2*-weighted multiband (multiband factor=3) accelerated

EPI sequence (TR=2s, TE=31ms, flip angle=73◦, FOV=220mm, 128×128 matrix,

1.7mm slice thickness, 1.7mm isotropic voxels).

SUSTAIN was initialized with no clusters, and with equivalent weights assigned to

each stimulus dimension. Its learning parameters were first fit to the learning

performance of each participant using a maximum-likelihood genetic algorithm

procedure. The model was fit in such a way that, after learning one problem, the model

state was used as the initial state for the subsequent problem. In this way, the model

was fit under the assumption that learning of one task would influence later behavior.

Once the learning parameters of the model were optimized, they were fixed, and the

attentional parameters were extracted from the second two runs of each task (in which

learning had largely stabilized). This yielded distinct sets of attentional parameters for

each participant and each task. More information about the model can be found in

appendix B.
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Image Processing

Preprocessing included motion correction, and coregistration of the anatomical

images to the mean of the functional images (using Statistical Parametric Mapping

(SPM), version 6470). All MVPA analyses were performed in native space without

smoothing. For group-level analyses, the statistical maps from each participant were

warped to Montreal Neurological Institute (MNI) atlas space using Advanced

Normalization Tools (ANTs; Avants, Tustison, & Johnson, 2009), and then smoothed

with a 6mm full-width at half maximum Gaussian kernel. The ROI derived from

group-level analyses were transformed back into each participants native space for

ROI-level analyses. We performed MVPA on the unsmoothed, single-trial, t-statistic

images (Misaki, Kim, Bandettini, & Kriegeskorte, 2010) derived from the least-squares

separate procedure (LSS; Mumford, Turner, Ashby, & Poldrack, 2012). We used SPM

to estimate the LSS images for the “5/4” dataset, but used the NiPy python package

(http://nipy.org/nipy/index.html) for the SHJ dataset, as it tends to run more

efficiently, and this study used a multiband sequence with smaller voxel dimensions.

Results

Representations of Individual Visual Features

To identify regions most strongly representing the stimulus features, we performed

a cross-validated searchlight analysis (sphere radius = 10mm.; Kriegeskorte, Goebel, &

Bandettini, 2006)2 in which we decoded each of the four visual features (position,

shape, color and size). We performed the analysis in native anatomical space, using a

linear support vector classifier (SVC, C=0.1; using the Scikit-learn python package;

Pedregosa et al., 2011) in conjunction with a five-fold, leave-one-run out, cross-validated

procedure. This involved repeatedly training the model on four of the five runs, and

testing whether it could accurately predict the stimulus features associated with the

held-out neuroimaging data.

2This involves moving an imaginary sphere throughout the brain; repeatedly investigating how well
the voxels within the sphere can decode a variable of interest.



OCCIPITOTEMPORAL REPRESENTATIONS 14

After centering each of the resultant statistical maps at chance (50% for each

visual feature), we created a single map for each participant, which reflected the

average, above chance, decoding accuracy across features. We then normalized each

map to to MNI space and, in order to identify regions supporting above chance feature

decoding, performed a group-level permutation test. This involved randomly flipping

the sign of the statistical maps 10,000 times (using the randomise function from the

Oxford Centre for Functional MRI of the Brain Software Library (FSL); Winkler,

Ridgway, Webster, Smith, & Nichols, 2014). The familywise error rate was controlled

using a voxelwise threshold of p < 0.001. This identified right middle frontal gyrus

(BA9) and left post-central motor cortex, as well as widespread visual and association

cortex, extending dorsally from occipital pole to the bilateral superior extrastriate

cortex and bilateral intraparietal sulcus (IPS), and ventrally into the bilateral lingual

gyrus (Table 3). As this procedure yielded a diffuse pattern of spatial activity, we

increased the minimum t-statistic threshold (from 6.24 to 9) to isolate voxels most

strongly representing the individual stimulus features. This removed voxels belonging to

the bilateral inferior occipital cortex, left lingual gyrus, bilateral intraparietal sulcus,

and bilateral precuneus. The resultant ROI is illustrated in Figure 3.B.

Effects Associated with Conceptual Knowledge

“5/4” Dataset. First, we confirmed that each stimulus feature could be

decoded significantly above chance from the ROI illustrated in Figure 3.B. Although

estimating effect sizes on voxels selected through non-orthogonal criteria is circular,

testing significance at the ROI-level has been recommended to confirm that information

exists, not only at the level of the searchlight sphere, but also at the level of the ROI

(Etzel, Zacks, & Braver, 2013). This analysis also allows us to illustrate the individual

feature decoding accuracies for each participant (Figure 3.C). The analyses were

performed in the native anatomical space of each participant using the cross-validated

SVC analysis described above (but setting the C parameter to 1 instead of 0.1, which
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Figure 3 . A) For the “5/4” dataset, a searchlight analysis indicated that binary
perceptual dimensions could be decoded from widespread visual regions (including
occipital, temporal and parietal cortex), right inferior frontal sulcus, and left
post-central motor cortex (the familywise error rate was controlled at the voxel-level p <
0.001). B) To isolate voxels most strongly representing the stimulus features, we raised
the statistical threshold, resulting in the ROI illustrated in yellow. C) “5/4” Dataset
Binary Feature Decoding. Red dots indicate scores from individual participants. D)
SHJ Binary Feature Decoding. The same ROI (B) was used in both datasets.

was chosen for the searchlight analysis to improve computational efficiency).3 Each

feature could be decoded at rates significantly above chance (shape: M = 0.60, SE =

0.02, t(19) = 5.78, p < 0.001, size: M = 0.70, SE = 0.02, t(19) = 9.29, p < 0.001, color:

M = 0.54, SE = 0.01, t(19) = 3.64, p = 0.002, position: M = 0.91, SE = 0.02, t(19) =

25.96, p < 0.001).

Next, we investigated whether the decoding accuracy of the individual perceptual

dimensions covaried with the GCM attentional parameters. To do so, we fit a

mixed-effects linear regression analysis (as implemented in the lme4 package for R)

using restricted maximum likelihood (ReML). We included fixed-effects terms for the

3The C parameter modulates the penalty associated with training error. With large values, the
classifier will choose a small-margin hyperplane, and training accuracy will be high. With smaller values,
out-of-sample performance is often improved, but more training samples may be misclassified. C=1 is a
common default setting for fMRI.
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intercept, the attentional weights, and each visual dimension (e.g., “color”). We also

included random effects terms (which were free to vary between participants) for the

intercept and the attention weight parameters. This allowed us to control for baseline

differences in decoding accuracy between participants, and for shared (group-level)

differences in decoding accuracy between visual dimensions. We used the

Kenward-Roger approximation (Kenward & Roger, 1997) to estimate degrees of

freedom (reported below), and used single-sample t-tests to calculate p-values for each

coefficient (using the pbkrtest package for R; Halekoh & Højsgaard, 2014)4. We

computed 95% confidence intervals using bootstrap resampling (1000 simulations). The

decoding accuracy of each stimulus dimension positively covaried with the

behaviorally-derived GCM parameters (b = 0.08, 95% CI = [0.01, 0.16], SE = 0.04,

t(28.71) = 2.26, p = 0.032), indicating that the decoding accuracy of these

representations reflected their importance during decision-making.

To investigate the sensitivity of occipitotemporal feature representations to

individual differences in GCM attentional weights, we conducted a permutation test.

This involved shuffling the attentional weight parameters between participants (i.e.,

swapping the weights derived from one participant with those derived from another),

and repeating the regression analysis (described above) 10,000 times. On each

permutation, the correspondence for category dimensions (i.e., the dimensions depicted

in Table 1, as opposed to the stimulus dimensions illustrated in Figure 1) was

preserved, such that the dimensional weights derived from the behavior of one

participant were assigned to the same dimensions, but to a different participant.

The unpermuted beta coefficient (b = 0.08) was significantly greater than those

composing the null distribution (P = 0.994), indicating that the decoding accuracy of

the occipitotemporal representations was sensitive to between-subject differences in the

attentional weights. This could reflect idiosyncratic differences in behavioral strategy,

and/or effects associated with perceptual saliency. Therefore, to investigate whether

visual salience may have influenced attention, we conducted a repeated measures

4This provides a more conservative test than the likelihood ratio test or the Wald approximation
(Luke, 2016).
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ANOVA for the perceptual features. There was no significant relationship between

these visual features and the attentional parameters (F(3,57) = 0.68, p = 0.56). A

Bayesian repeated-measures ANOVA (Rouder, Morey, Verhagen, Swagman, &

Wagenmakers, 2017), additionally indicated that the null model was 4.65 times more

likely than the alternative hypothesis. These results provide evidence that the observed

effects were not driven by visual characteristics of the stimulus features.

SHJ Dataset. First, we confirmed that each stimulus feature could be decoded

significantly above chance from the ROI illustrated in Figure 3.B. Using a four-fold,

leave-one-run out cross-validation strategy, we used a linear support vector classifier

(C=1) to decode each visual feature across all runs (including both early and late

learning epochs), retaining only estimates for the last two runs (which corresponded to

the late-learning phase in which behavior had largely stabilized). This four-fold

cross-validation strategy yielded better decoding accuracy than a two-fold approach

based on only the last two runs. This improvement reflects the increased amount of

training data available in the 4-fold approach, and suggests that the multivariate

patterns reflecting the individual visual features were stable across learning. Each

feature could be decoded at rates significantly above chance (Figure 3.D; antennae: M

= 0.57, t(20) = 3.82, p = 0.001; mandibles: M = 0.56, t(20) = 3.22, p = 0.004; legs: M

= 0.58, t(20) = 4.17, p < 0.001).

Next, we investigated whether the decoding accuracy associated with the features

covaried with SUSTAIN’s attentional parameters. To do so, we used a mixed-effects

linear regression analysis to predict decoding accuracy from attention weight, visual

dimension, run and rule. As described in the Methods section, distinct attentional

weights were derived for each subject and each rule. The decoding accuracy for each

separate run was included in the analysis. The model included fixed-effects parameters

for these four variables, and random-effects parameters for the intercept, attention

weight, and run (which were free to vary by participant). This allowed us to control for

differences in decoding accuracy across visual dimensions and participants (as with the

model used for the “5/4” dataset), while additionally controlling for effects of rule and
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idiosyncratic differences in behavioral performance during the last two runs. Mirroring

the findings from the “5/4” dataset, we found that the decoding accuracy of these

patterns positively covaried with the attention parameters derived from SUSTAIN (b =

0.09, 95% CI = [0.004, 0.17], SE = 0.04, t(61) = 2.13, p = 0.038).

To investigate the sensitivity of occipitotemporal feature representations to

individual differences in SUSTAIN’s attentional parameters, we conducted a

permutation test similar to that described above (i.e., for the “5/4” experiment). This

involved shuffling the attentional weight parameters between participants 10,000 times

(preserving the correspondence for both rule and abstract feature). This means that the

attentional weight derived from the behavior of one participant, for one particular rule

and one particular category feature, was assigned to the same rule and feature, but to a

different participant. The slope parameter associated with the unpermuted data (b =

0.09) was significantly greater than those composing the permuted null distribution (P

= 0.979), suggesting that the visual feature representations were sensitive to

idiosyncratic differences in attentional weights. A repeated measures ANOVA indicated

that the perceptual dimensions did not influence the attentional parameters (F(2,44) =

1.27, p = 0.291). A Bayesian repeated measures ANOVA additionally indicated that

the null model was 1.98 times more likely than the alternative hypothesis, providing

evidence that the attentional weights were not influenced by visual properties of the

stimulus features.

Discussion

Although differing substantially in how concepts are represented (e.g., as

exemplars, prototypes, or clusters), formal categorization theories (e.g., Kruschke, 1992;

Love et al., 2004; Nosofsky, 1986) tend to share a similar conception of selective

attention. In these models, conceptual knowledge contorts multidimensional

psychological space such that differences along behaviorally-relevant dimensions are

accentuated, and differences along irrelevant dimensions are down-weighted (Figure 1,

and Equations 1 & 4 in appendix B). In two datasets (Mack et al., 2016, 2013), we
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evaluated the neurobiological plausibility of this idea by investigating whether

occipitotemporal stimulus feature representations covaried with attention parameters

derived from formal categorization models. We found that this effect was not only

apparent at the group-level, but was sufficiently sensitive to reflect individual differences

in conceptual knowledge.

Several previous studies have demonstrated that occipitotemporal stimulus

representations are modulated by selective attention (e.g., Buffalo et al., 2010; Jehee et

al., 2011; Kamitani & Tong, 2005, 2006; Luck et al., 1997; Motter, 1993; Reynolds &

Chelazzi, 2004; Reynolds, Pasternak, & Desimone, 2000) and by learned conceptual

knowledge (e.g., Folstein et al., 2013; Li et al., 2007; Sigala & Logothetis, 2002). These

studies have relied on statistically-powerful contrastive approaches, in which

representations of attended stimulus dimensions are compared to those of unattended

dimensions. A general finding is that attended stimulus dimensions are more easily

decoded than those that are unattended. This implies that occipitotemporal

representational space might resemble that conceptualized by formal categorization

theory (e.g., Kruschke, 1992; Love et al., 2004; Nosofsky, 1986). Specifically, the

expansion and contraction of this space might closely reflect individual differences in the

importance assigned to each stimulus dimension. However, as the contrastive approach

defines selective attention with regards to the experimental paradigm, it is insensitive to

individual differences in categorization strategy (e.g., Craig & Lewandowsky, 2012;

Little & McDaniel, 2015; McDaniel et al., 2014; Raijmakers et al., 2014). Here, we link

individual differences in behavior to individual differences in neural representation

through consideration of the attentional parameters derived from formal categorization

models.

We are not the first to link brain and behavior via latent model parameters. In

the perceptual decision-making literature, for instance, several groups have fit the drift

diffusion model (Ratcliff, 1978) to behavioral data, and identified regions of the brain

where the BOLD response reflects variation in its drift rate, bias, and threshold

parameters (e.g., Forstmann et al., 2008; Mulder, Wagenmakers, Ratcliff, Boekel, &
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Forstmann, 2012; Purcell et al., 2010). As in the present study, several of these studies

demonstrated that individual differences in behavioral strategy are reflected in the

brain. Instead of linking latent model parameters to univariate BOLD amplitude,

however, we used MVPA to link latent parameters to multivoxel representations of the

stimulus features. This provided a precise test of the idea that selective attention

contorts neural representational space.

These endogenous attentional effects are thought to arise through communication

with other areas of the brain. In lateral frontal cortex, for instance, effects of

endogenous attention occur earlier in time than in occipitotemporal cortex (Baldauf &

Desimone, 2014; Bichot, Heard, Degennaro, & Desimone, 2015; Zhou & Desimone,

2011). Inactivation of these frontal regions (e.g., ventral prearcuate sulcus, or entire

lateral prefrontal cortex) has also been associated wtih a reduction in the magnitude of

attentional effects in occipitotemporal cortex (Bichot et al., 2015; Gregoriou, Rossi,

Ungerleider, & Desimone, 2014). Interestingly, contextually-sensitive effects of

endogenous attention have also been observed in the lateral geniculate nucleus (LGN),

suggesting that some aspects of attention precede those in cortex (McAlonan,

Cavanaugh, & Wurtz, 2008; O’Connor, Fukui, Pinsk, & Kastner, 2002; Saalmann &

Kastner, 2011).

Finally, it is worth noting that, although we observed effects of selective attention

across two different stimulus sets (abstract shapes in the “5/4” experiment, and insects

in the SHJ experiment), and across multiple category structures (the “5/4” problem

described by Medin and Schaffer (1978), and the Type I, II and VI problems described

by Shepard et al. (1961)), these effects might not be apparent for all stimuli and tasks.

For instance, although category training can improve perceptual discriminability of

relevant stimulus features when stimuli consist of perceptually-separable features

(Garner, 1976), this may not occur for integral dimensions (Op de Beeck, Wagemans, &

Vogels, 2003) or for stimuli defined according to “blended” stimulus morphspaces

(Folstein et al., 2013). More work is needed to better understand how attention

influences occipitotemporal representations for such stimuli. One possibility is that
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selective attention does not warp perceptual representations of integral stimulus

dimensions, but might operate on abstract cognitive or “decisional” representations in

higher-order cortex (Jiang et al., 2007; Nosofsky, 1987).

Conclusions

Category training is known to induce changes in both perceptual (Folstein,

Gauthier, & Palmeri, 2012; Goldstone, 1994; Goldstone, Steyvers, & Larimer, 1996;

Gureckis & Goldstone, 2008; Op de Beeck et al., 2003) and neural sensitivity (e.g.,

Dieciuc, Roque, & Folstein, 2017; Folstein et al., 2013; Folstein, Palmeri, Gauthier, &

Van Gulick, 2015; Li et al., 2007; Sigala & Logothetis, 2002). In two datasets, we

demonstrate that occipitotemporal stimulus representations covary with the attentional

parameters derived from formal categorization theory. This effect was sufficiently

sensitive to reflect individual differences in conceptual knowledge, which implies that

these occipitotemporal representations are embedded within a space closely resembling

that predicted by formal categorization theory (e.g., Kruschke, 1992; Love et al., 2004;

Nosofsky, 1986).

By linking brain and behavior through the latent attentional parameters of

cognitive models, we also link two (somewhat) disparate literatures. In the neuroscience

literature, effects of selective attention are typically examined using highly-structured

decision problems, and selective attention is investigated by contrasting different

aspects of the experimental design (i.e., relevant vs. irrelevant stimulus dimensions). In

the cognitive categorization literature, researchers have focused on developing models

that accurately account for behavioral patterns of generalization across different goals

and tasks. Our results indicate that these cognitive models can be used to examine

effects of selective attention in the brain. This is the case, even for ill-defined decision

problems (such as the “5/4” task), as the models are able to successfully account for

individual differences in conceptual knowledge.
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Context

Brad Love has a longstanding interests in models of categorization. He developed

the SUSTAIN model (Love et al., 2004) used here, and subsequently became interested

in how to theoretically relate such models to the brain (Love & Gureckis, 2007). Later,

he used category category learning models in model-based fMRI analyses, such as in the

two papers from which this contribution draws its data (Mack et al., 2016, 2013).

Through several papers, Kurt Braunlich has investigated neurobiological mechanisms

associated with categorization and generalization. Recently (Braunlich, Liu, & Seger,

2017), he found that occipitotemporal category representations are highly flexible, in

that they are sensitive to transient generalization demands (i.e., strict vs. lax decision

criteria). This dovetails with the present work, which examines attentional effects

associated with task demands. The present work was presented at the Society for

Neuroscience annual meeting (2017), and at the Cognitive Computational Neuroscience

annual meeting (2017). An earlier version of the manuscript is available on the BioRxiv

preprint server (Braunlich & Love, 2018).



OCCIPITOTEMPORAL REPRESENTATIONS 23

References

Avants, B., Tustison, N., & Johnson, H. (2009). Advanced Normalization Tools

(ANTS). Insight Journal, 1–35.

Baldauf, D., & Desimone, R. (2014). Neural mechanisms of object-based attention.

Science, 344 (6182), 424–7. doi: 10.1126/science.1247003

Bichot, N. P., Heard, M. T., Degennaro, E. M., & Desimone, R. (2015). A source for

feature-based attention in the prefrontal cortex. Neuron, 88 , 1–13. doi:

10.1016/j.neuron.2015.10.001

Braunlich, K., Liu, Z., & Seger, C. A. (2017). Occipitotemporal category

representations are sensitive to abstract category boundaries defined by

generalization demands. The Journal of Neuroscience, 37 (32), 3825–16.

Braunlich, K., & Love, B. C. (2018). Occipitotemporal representations reflect individual

differences in conceptual knowledge. BioRxiv, 264895. doi: 10.1101/264895

Brincat, S. L., Siegel, M., Nicolai, C. V., & Miller, E. K. (2017). Gradual progression

from sensory to task-related processing in cerebral cortex.

doi: 10.1101/195602

Buffalo, E. A., Fries, P., Landman, R., Liang, H., & Desimone, R. (2010). A backward

progression of attentional effects in the ventral stream. Proceedings of the

National Academy of Sciences, 107 (1), 361–365. doi: 10.1073/pnas.0907658106

Craig, S., & Lewandowsky, S. (2012). Whichever way you choose to categorize, working

memory helps you learn. Quarterly Journal of Experimental Psychology, 65 (3),

439-464. doi: 10.1080/17470218.2011.608854

Dieciuc, M., Roque, N. A., & Folstein, J. R. (2017). Changing similarity: Stable and

flexible modulations of psychological dimensions. Brain Research, 1670 , 208–219.

doi: 10.1016/j.brainres.2017.06.026

Etzel, J. A., Zacks, J. M., & Braver, T. S. (2013). Searchlight analysis: Promise,

pitfalls, and potential. NeuroImage, 78C , 261–269. doi:

10.1016/j.neuroimage.2013.03.041

Folstein, J. R., Gauthier, I., & Palmeri, T. J. (2012). How category learning affects



OCCIPITOTEMPORAL REPRESENTATIONS 24

object representations: Not all morphspaces stretch alike. Journal of Experimental

Psychology. Learning, Memory, and Cognition, 38 (4), 807–20. doi:

10.1037/a0025836

Folstein, J. R., Palmeri, T. J., & Gauthier, I. (2013). Category learning increases

discriminability of relevant object dimensions in visual cortex. Cerebral Cortex ,

23 (4), 814–823. doi: 10.1093/cercor/bhs067

Folstein, J. R., Palmeri, T. J., Gauthier, I., & Van Gulick, A. E. (2015). Category

learning stretches neural representations in visual cortex. Current Directions in

Psychological Science, 24 (1), 17–23. doi: 10.1177/0963721414550707

Forstmann, B. U., Dutilh, G., Brown, S., Neumann, J., von Cramon, D. Y.,

Ridderinkhof, K. R., & Wagenmakers, E.-J. (2008). Striatum and pre-SMA

facilitate decision-making under time pressure. Proceedings of the National

Academy of Sciences of the United States of America, 105 (45), 17538–42. doi:

10.1073/pnas.0805903105

Garner, W. (1976). Interaction of stimulus dimensions in concept and choice processes.

Cognitive Psychology, 8 (1), 98–123. doi: 10.1016/0010-0285(76)90006-2

Goldstone, R. L. (1994). Influences of categorization on perceptual discrimination.

Journal of Experimental Psychology. General, 123 (2), 178–200. doi:

10.1037/0096-3445.123.2.178

Goldstone, R. L. (2003). Learning to perceive while perceiving to learn. In R. Kimchi,

M. Behrmann, & C. Olson (Eds.), Perceptual organization in vision: Behavioral

and neural perspectives. (pp. 233–278). New Jersey: Lawrence Erlbaum

Associates.

Goldstone, R. L., Steyvers, M., & Larimer, K. (1996). Categorical perception of novel

dimensions. In Proceedings of the eighteenth annual conference of the cognitive

science society (pp. 243–248). doi: 10.1080/713756735

Gregoriou, G. G., Rossi, A. F., Ungerleider, L. G., & Desimone, R. (2014). Lesions of

prefrontal cortex reduce attentional modulation of neuronal responses and

synchrony in V4. Nature Neuroscience, 17 (7), 1003–11. doi: 10.1038/nn.3742



OCCIPITOTEMPORAL REPRESENTATIONS 25

Gureckis, T. M., & Goldstone, R. L. (2008). The effect of the internal structure of

categories on perception. Proceedings of the 30th Annual Conference of the

Cognitive Science Society, 1876–1881.

Halekoh, U., & Højsgaard, S. (2014). A Kenward-Roger approximation and parametric

bootstrap methods for tests in linear mixed models - The R package pbkrtest.

Journal of Statistical Software, 59 (9), 1–32. doi: 10.18637/jss.v059.i09

Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P.

(2001). Distrubuted and overlapping representations of face and objects in ventral

temporal cortex. Science, 293 (5539), 2425–2430. doi: 10.1126/science.1063736

Haynes, J.-D. (2015). A primer on pattern-based approaches to fMRI: Principles,

pitfalls, and perspectives. Neuron, 87 (2), 257–270. doi:

10.1016/j.neuron.2015.05.025

Hedge, C., Powell, G., & Sumner, P. (2017). The reliability paradox: Why robust

cognitive tasks do not produce reliable individual differences. Behavior Research

Methods, 1-21. doi: 10.3758/s13428-017-0935-1

Jehee, J. F. M., Brady, D. K., & Tong, F. (2011). Attention improves encoding of

task-relevant features in the human visual cortex. The Journal of Neuroscience,

31 (22), 8210–8219. doi: 10.1523/JNEUROSCI.6153-09.2011

Jiang, X., Bradley, E., Rini, R. A., Zeffiro, T., VanMeter, J., & Riesenhuber, M. (2007).

Categorization training results in shape- and category-selective human neural

plasticity. Neuron, 53 (6), 891–903. doi: 10.1016/j.neuron.2007.02.015

Johansen, M. K., & Palmeri, T. J. (2002). Are there representational shifts during

category learning? Cognitive Psychology, 45 (4), 482-553. doi:

10.1016/S0010-0285(02)00505-4

Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the

human brain. Nature Neuroscience, 8 (5), 679–685. doi: 10.1038/nn1444

Kamitani, Y., & Tong, F. (2006). Decoding seen and attended motion directions from

activity in the human visual cortex. Current Biology, 16 (11), 1096–1102. doi:

10.1016/j.cub.2006.04.003



OCCIPITOTEMPORAL REPRESENTATIONS 26

Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from

restricted maximum likelihood. Biometrics, 53 (3), 983–997.

Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional

brain mapping. Proceedings of the National Academy of Sciences of the United

States of America, 103 (10), 3863–8. doi: 10.1073/pnas.0600244103

Kriegeskorte, N., & Kievit, R. A. (2013). Representational geometry: Integrating

cognition, computation, and the brain. Trends in cognitive sciences, 17 (8),

401–12. doi: 10.1016/j.tics.2013.06.007

Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational similarity

analysis: Connecting the branches of systems neuroscience. Frontiers in Systems

Neuroscience, 2 . doi: 10.3389/neuro.06.004.2008

Kruschke, J. (1992). ALCOVE: An exemplar-based connectionist model of category

learning. Psychological Review.

Li, S., Ostwald, D., Giese, M., & Kourtzi, Z. (2007). Flexible coding for categorical

decisions in the human brain. The Journal of Neuroscience, 27 (45), 12321–30.

doi: 10.1523/JNEUROSCI.3795-07.2007

Little, J. L., & McDaniel, M. (2015). Individual differences in category learning:

Memorization versus rule abstraction. Memory & cognition, 43 (2), 283-97. doi:

10.3758/s13421-014-0475-1

Love, B. C., & Gureckis, T. M. (2007). Models in search of a brain. Cognitive, Affective

& Behavioral Neuroscience, 7 (2), 90–108. doi: 10.3758/CABN.7.2.90

Love, B. C., Medin, D. L., & Gureckis, T. M. (2004). SUSTAIN: A network model of

category learning. Psychological Review, 111 (2), 309–32. doi:

10.1037/0033-295X.111.2.309

Luck, S. J., Chelazzi, L., Hillyard, S. A., & Desimone, R. (1997). Neural mechanisms of

spatial selective attention in areas V1, V2, and V4 of macaque visual cortex.

Journal of Neurophysiology, 77 (1), 24–42.

Luke, S. G. (2016). Evaluating significance in linear mixed-effects models in R.

Behavior Research Methods, 49 (4), 1494–1502.



OCCIPITOTEMPORAL REPRESENTATIONS 27

Mack, M. L., Love, B. C., & Preston, A. R. (2016). Dynamic updating of hippocampal

object representations reflects new conceptual knowledge. Proceedings of the

National Academy of Sciences of the United States of America, 113 (46),

13203–13208. doi: 10.1073/pnas.1614048113

Mack, M. L., Preston, A. R., & Love, B. C. (2013). Decoding the brain’s algorithm for

categorization from its neural implementation. Current Biology, 23 (20),

2023–2027. doi: 10.1016/j.cub.2013.08.035

McAlonan, K., Cavanaugh, J., & Wurtz, R. H. (2008). Guarding the gateway to cortex

with attention in visual thalamus. Nature, 456 (7220), 391-394. doi:

10.1038/nature07382

McDaniel, M. A., Cahill, M. J., Robbins, M., & Wiener, C. (2014). Individual

differences in learning and transfer: Stable tendencies for learning exemplars

versus abstracting rules. Journal of Experimental Psychology., 143, 143 (2, 2), 668,

668-693. doi: 10.1037/a0032963, 10.1037/a0032963

Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning.

Psychological Review, 85 (3), 207–238. doi: 10.1037/0033-295X.85.3.207

Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex

function. Annual Review of Neuroscience, 24 , 167–202. doi:

10.1146/annurev.neuro.24.1.167

Minda, J. P., & Smith, J. D. (2002). Comparing prototype-based and exemplar-based

accounts of category learning and attentional allocation. Journal of Experimental

Psychology: Learning, Memory, and Cognition, 28 (2), 275–292. doi:

10.1037//0278-7393.28.2.275

Misaki, M., Kim, Y., Bandettini, P. A., & Kriegeskorte, N. (2010). Comparison of

multivariate classifiers and response normalizations for pattern-information fMRI.

NeuroImage, 53 (1), 103–18. doi: 10.1016/j.neuroimage.2010.05.051

Motter, B. C. (1993). Focal attention produces spatially selective processing in visual

cortical areas V1, V2, and V4 in the presence of competing stimuli. Journal of

Neurophysiology, 70 (3), 909–919. doi: 0022-3077/93



OCCIPITOTEMPORAL REPRESENTATIONS 28

Mulder, M. J., Wagenmakers, E.-J., Ratcliff, R., Boekel, W., & Forstmann, B. U.

(2012). Bias in the brain: A diffusion model analysis of prior probability and

potential payoff. Journal of Neuroscience, 32 (7), 2335–2343. doi:

10.1523/JNEUROSCI.4156-11.2012

Mumford, J. A., Turner, B. O., Ashby, F. G., & Poldrack, R. A. (2012). Deconvolving

BOLD activation in event-related designs for multivoxel pattern classification

analyses. NeuroImage, 59 (3), 2636–43. doi: 10.1016/j.neuroimage.2011.08.076

Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization

relationship. Journal of Experimental Psychology: Learning, Memory, and

Cognition, 115 (1), 39–57. doi: 10.1037/0278-7393.13.1.87

Nosofsky, R. M. (1987). Attention and learning processes in the identification and

categorization of integral stimuli. Journal of Experimental Psychology: Learning,

Memory & Cognition, 13 (1), 87–108. doi: 10.1037/0278-7393.13.1.87

Nosofsky, R. M., & Zaki, S. R. (2002). Exemplar and prototype models revisited:

Response strategies, selective attention, and stimulus generalization. Journal of

Experimental Psychology-Learning Memory and Cognition, 28 (5), 924–940. doi:

10.1037/0278-7393.28.5.924

O’Bryan, S. R., Walden, E., Serra, M. J., & Davis, T. (2018). Rule activation and

ventromedial prefrontal engagement support accurate stopping in self-paced

learning. , 172 , 415-426. doi: 10.1016/j.neuroimage.2018.01.084

O’Connor, D. H., Fukui, M. M., Pinsk, M. A., & Kastner, S. (2002). Attention

modulates responses in the human lateral geniculate nucleus. Nature

Neuroscience, 5 (11), 1203-1209. doi: 10.1038/nn957

Op de Beeck, H., Wagemans, J., & Vogels, R. (2003). The effect of category learning on

the representation of shape: Dimensions can be biased but not differentiated.

Journal of Experimental Psychology. General, 132 (4), 491–511. doi:

10.1037/0096-3445.132.4.491

Palmeri, T. J., Love, B. C., & Turner, B. M. (2017). Model-based cognitive

neuroscience. Journal of Mathematical Psychology, 76 , 59–64. doi:



OCCIPITOTEMPORAL REPRESENTATIONS 29

10.1016/j.jmp.2016.10.010

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . .

Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of

Machine Learning Research, 12 , 2825–2830.

Purcell, B. A., Heitz, R. P., Cohen, J. Y., Schall, J. D., Logan, G. D., & Palmeri, T. J.

(2010). Neurally constrained modeling of perceptual decision making.

Psychological Review, 117 (4), 1113-1143.

Raijmakers, M. E. J., Schmittmann, V. D., & Visser, I. (2014). Costs and benefits of

automatization in category learning of ill-defined rules. Cognitive Psychology, 69 ,

1-24. doi: 10.1016/j.cogpsych.2013.12.002

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85 (2), 59:108.

Rehder, B., & Hoffman, A. B. (2005a). Eyetracking and selective attention in category

learning. Cognitive Psychology, 51 (1), 1–41. doi: 10.1016/j.cogpsych.2004.11.001

Rehder, B., & Hoffman, A. B. (2005b). Thirty-something categorization results

explained: Selective attention, eyetracking, and models of category learning.

Journal of Experimental Psychology: Learning, Memory & Cognition, 31 (5),

811–29. doi: 10.1037/0278-7393.31.5.811

Reynolds, J. H., & Chelazzi, L. (2004). Attentional modulation of visual processing.

Annual Review of Neuroscience, 27 (1), 611–647. doi:

10.1146/annurev.neuro.26.041002.131039

Reynolds, J. H., Pasternak, T., & Desimone, R. (2000). Attention increases sensitivity

of V4 neurons. Neuron, 26 (3), 703–714. doi: 10.1016/S0896-6273(00)81206-4

Rouder, J. N., Morey, R. D., Verhagen, J., Swagman, A. R., & Wagenmakers, E.-J.

(2017). Bayesian analysis of factorial designs. Psychological Methods, 22 (2),

304–321. doi: 10.1037/met0000057

Saalmann, Y. B., & Kastner, S. (2011). Cognitive and perceptual functions of the

visual thalamus. Neuron, 71 .

Shepard, R. N. (1957). Stimulus and response generalization: A stochastic model

relating generalization to distance in psychological space. Psychometrika, 22 (4),



OCCIPITOTEMPORAL REPRESENTATIONS 30

325–345. doi: 10.1007/BF02288967

Shepard, R. N., Hovland, C., & Jenkins, H. (1961). Learning and memorization of

classifications. Psychological Monographs: General and Applied, 75 (13).

Sigala, N., & Logothetis, N. K. (2002). Visual categorization shapes feature selectivity

in the primate temporal cortex. Nature, 415 (6869), 318–320. doi:

10.1038/415318a

Smith, J. D., & Minda, J. P. (1998). Prototypes in the mist: The early epochs of

category learning. Journal of Experimental Psychology: Learning, Memory, and

Cognition, 24 (6), 1411–1436. doi: 10.1037//0278-7393.24.6.1411

Townsend, J. T., & Ashby, F. G. (1982). Experimental test of contemporary

mathematical models of visual letter recognition. Journal of Experimental

Psychology. Human Perception and Performance, 8 (6), 834–854. doi:

10.1037/0096-1523.8.6.834

Tsotsos, J. K. (2011). A Computational Perspective on Visual Attention. MIT Press.

Turner, B. M., Forstmann, B. U., Love, B. C., Palmeri, T. J., & Van Maanen, L.

(2017). Approaches to analysis in model-based cognitive neuroscience. Journal of

Mathematical Psychology, 76 , 65–79. doi: 10.1016/j.jmp.2016.01.001

Tversky, A. (1977). Features of similarity. Psychological Review, 84 (4), 327:352.

Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014).

Permutation inference for the general linear model. NeuroImage, 92 , 381–397.

doi: 10.1016/j.neuroimage.2014.01.060

Zaki, S. R., Nosofsky, R. M., Stanton, R. D., & Cohen, A. L. (2003). Prototype and

exemplar accounts of category learning and attentional allocation: A

reassessment. Journal of Experimental Psychology: Learning, Memory, and

Cognition, 29 (6), 1160–1173. doi: 10.1037/0278-7393.29.6.1160

Zhou, H., & Desimone, R. (2011). Feature-Based attention in the frontal eye field and

area V4 during visual search. Neuron, 70 (6), 1205-1217. doi:

10.1016/j.neuron.2011.04.032



OCCIPITOTEMPORAL REPRESENTATIONS 31

Appendix A: Searchlight Results

Size x y z t BA Region
23972 14 -74 4 12.717 18 Calcarine_R

28 -62 54 10.5 7 Parietal_Sup_R
-54 -18 44 7.256 3 Postcentral_L

233 50 24 26 7.447 48 Frontal_Inf_Tri_R
22 -46 12 44 6.621 9 Frontal_Mid_L

Table 3
“5/4” Dataset Binary Feature Decoding: Searchlight Results. The familywise error rate
was controlled at the voxel level (p < 0.001)
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Appendix B: Computational Models and Attentional Parameters

For the first dataset (Mack et al., 2013), we considered the Generalized Context

Model (GCM; Nosofsky, 1986), which posits that conceptual knowledge consists of

memory for individual exemplars. For the SHJ experiment (Mack et al., 2016), we

considered the attentional parameters from SUSTAIN (Supervised and Unsupervised

STratified Adaptive Incremental Network; Love et al., 2004). Details about the models

can be found in the original papers. Here, we provide a brief overview of each.

GCM

In the Generalized Context Model (GCM; Nosofsky, 1987), the psychological

distance, d between stimuli i and j can be calculated as the attentionally-weighted sum

of their unsigned differences across dimensions, k:

dij =
∑
k

[wk|xik − xjk|r]1/r , (1)

where w indicate the attentional parameters assigned to each dimension. The r

parameter is set to 1 (city-block distance) for perceptually separable stimulus

dimensions (as in the “5/4” dataset), and r is set to 2 (Euclidean distance) for integral

dimensions (Garner, 1976). Similarity is an exponentially-decaying function of

psychological distance:

sij = d−cdij , (2)

where the shape of the similarity gradient is influenced by the sensitivity parameter, c.

The probability of choosing category “A”, given stimulus, i, is given by the choice rule:

P (A|i) =

( ∑
a∈A

sia

)γ
( ∑
a∈A

sia

)γ
+
( ∑
b∈B

sib

)γ , (3)

where γ governs the degree of deterministic responding.



OCCIPITOTEMPORAL REPRESENTATIONS 33

SUSTAIN

SUSTAIN is a semi-supervised clustering model, which incrementally learns to

solve categorization problems by first applying simple solutions, and then increasing

complexity as required. Through experience, the model can learn to group similar items

into common clusters, and can make inferences about novel stimuli based on its

perceptual similarity to existing clusters (i.e., based on perceptual similarity, clusters

compete to predict latent stimulus attributes). When unexpected feedback is received,

the model can also learn in a supervised fashion by creating a new cluster to represent

the novel stimulus.

In SUSTAIN, all clusters contain receptive fields (RF’s) for each stimulus

dimension. As new stimuli are added to the cluster, the model learns by adjusting the

position of each RF to best match the cluster’s expectation for novel stimuli. As the RF

is an exponential function, a cluster’s activation, α, decreases exponentially with

distance from its preferred value:

α(µ) = λe−λµ, (4)

where µ represents the distance of the stimulus dimension value from the cluster’s

preferred stimulus dimension value, and where λ represents the tuning (or width) of the

RF. The λ parameters are specific to dimensions, but are shared across dimensions, and

so, like the attentional parameters in the GCM, the λ parameters in SUSTAIN

modulate the influence of each stimulus dimension on the overall decision outcome.

The overall activation of a cluster, H, involves consideration of each dimension, k:

H =

∑
k

(λk)γe−λkµk∑
k

(λk)γ
, (5)

where the γ parameter (which is always non-negative) modulates the influence of the λ

parameters on the choice outcome. When γ is large, attended dimensions (which are

associated with large λ values, and narrow RF’s), dominate the activation function (eq.

5); when γ is zero, the λ parameters are ignored, and all dimensions exert equal
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influence on the choice.

SUSTAIN was fit to the SHJ dataset in a supervised fashion, using the same trial

order experienced by the participants; it was also fit across rule-switches, such that

learning from one task was carried over to the next. Thus, SUSTAIN was capable of

reflecting learning, as well as carry-over effects associated with previously learned rules.


